Surface plasmon resonance (SPR)-based biosensing is a powerful tool to study the recognition processes between biomolecules in real-time without need for labels. The use of thiol chemistry is a critical component in surface functionalization of various SPR biosensor surfaces on gold. However, its use is hampered by the high propensity for oxidation of the gold-thiol linkage even in ambient atmosphere, resulting in a short lifetime of SPR sensor chips unless strict precautions are taken. Herein, we describe an approach to overcome this limitation by employing highly robust self-assembled monolayers (SAMs) of alkylated N-heterocyclic carbenes (NHCs) on gold. An alkylated NHC sensor surface was developed and its biosensing capabilities were compared to a commercial thiol-based analogue-a hydrophobic association (HPA) chip-in terms of its ability to act as a reliable platform for biospecific interaction analysis under a wide range of conditions. The NHC-based SPR sensor outperforms related thiol-based sesnsors in several aspects, including lower nonspecific binding capacity, better chemical stability, higher reproducibility, shorter equilibration time, and longer life span. We also demonstrate that the NHC-based sensor can be used for rapid and efficient formation of a hybrid lipid bilayer for use in membrane interaction studies. Overall, this work identifies the great promise in designing NHC-based surfaces as a new technology platform for SPR-based biosensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b03280 | DOI Listing |
Biosensors (Basel)
December 2024
Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients' survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan.
Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China.
Chemically modifiable small-molecule hole transport materials (HTMs) hold promise for achieving efficient and scalable perovskite solar cells (PSCs). Compared to emerging self-assembled monolayers, small-molecule HTMs are more reliable in terms of large-area deposition and long-term operational stability. However, current small-molecule HTMs in inverted PSCs lack efficient molecular designs that balance both the charge transport capability and interface compatibility, resulting in a long-standing stagnation of power conversion efficiency (PCE) below 24.
View Article and Find Full Text PDFLangmuir
December 2024
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Self-assembled organic nanotubes (ONTs) have been actively examined for various applications such as chemical separations and catalysis owing to their well-defined tubular nanostructures with distinct chemical environments at the wall and internal/external surfaces. Adsorption of heavy metal ions onto ONTs plays an essential role in many of these applications but has rarely been assessed quantitatively. Herein, we investigated interactions between Cu and single-/quadruple-wall bolaamphiphile-based ONTs having inner carboxyl groups with different inner diameters, COOH-ONT and COOH-ONT.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Perovskite solar cells are among the most promising renewable energy devices, and enhancing their stability is crucial for commercialization. This research presents the use of L-Ergothioneine (L-EGT) as a passivation material in perovskite solar cells, strategically placed between the electron transport layer and the perovskite absorber layer to mitigate defect states at the heterojunction interface. Surface analysis reveals that introducing L-EGT passivation material significantly improves the quality of the perovskite film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!