Regulatory Mechanism of Mycobacterium tuberculosis Phosphoserine Phosphatase SerB2.

Biochemistry

Departments of Developmental Biology and Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States.

Published: December 2017

Almost all organisms contain the same biosynthetic pathway for the synthesis of l-serine from the glycolytic intermediate, d-3-phosphoglycerate. However, regulation of this pathway varies from organism to organism. Many organisms control the activity of the first enzyme in the pathway, d-3-phosphoglycerate dehydrogenase (PGDH), by feedback inhibition through the interaction of l-serine with the ACT domains within the enzyme. The last enzyme in the pathway, phosphoserine phosphatase (PSP), has also been reported to be inhibited by l-serine. The high degree of sequence homology between Mycobacterium tuberculosis PSP (mtPSP) and Mycobacterium avium PSP (maPSP), which has recently been shown to contain ACT domains, suggested that the mtPSP also contained ACT domains. This raised the question of whether the ACT domains in mtPSP played a functional role similar to that of the ACT domains in PGDH. This investigation reveals that l-serine allosterically inhibits mtPSP by a mechanism of partial competitive inhibition by binding to the ACT domains. Therefore, in mtPSP, l-serine is an allosteric feedback inhibitor that acts by decreasing the affinity of the substrate for the enzyme. mtPGDH is also feedback inhibited by l-serine, but only in the presence of millimolar concentrations of phosphate. Therefore, the inhibition of mtPSP by l-serine would act as a secondary control point for the regulation of the l-serine biosynthetic pathway under physiological conditions where the level of phosphate would be below that needed for l-serine feedback inhibition of mtPGDH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.7b01082DOI Listing

Publication Analysis

Top Keywords

l-serine
9
mycobacterium tuberculosis
8
phosphoserine phosphatase
8
biosynthetic pathway
8
enzyme pathway
8
feedback inhibition
8
inhibited l-serine
8
domains mtpsp
8
mtpsp l-serine
8
domains
6

Similar Publications

Inoculation of Bothrops jararaca snake venom (BjV) induces thrombocytopenia in humans and various animal species. Although several BjV toxins acting on hemostasis have been well characterized in vitro, it is not known which one is responsible for inducing thrombocytopenia in vivo. In previous studies, we showed that BjV incubated with metalloproteinase or serine proteinase inhibitors and/or anti-botrocetin antibodies still induced thrombocytopenia in rats and mice.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.

View Article and Find Full Text PDF

targeting of AmpC beta-lactamases in : unveiling Piperenol B as a potent antimicrobial lead.

J Biomol Struct Dyn

December 2024

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India.

Antimicrobial Resistance poses a major threat to human health worldwide. Microorganisms develop multi-drug resistance due to intrinsic factors, evolutionary chromosomal alterations, and horizontal gene transfer. , a common nosocomial bacterium, can cause various infections and is classified as multidrug-resistant.

View Article and Find Full Text PDF

Molecular epidemiology of invasive group B Streptococcus in South Africa, 2019-2020.

J Infect Dis

December 2024

Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.

Background: Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and sepsis and an important cause of disease in adults. Capsular polysaccharide and protein-based GBS vaccines are currently under development.

Methods: Through national laboratory-based surveillance, invasive GBS isolates were collected from patients of all ages between 2019 and 2020.

View Article and Find Full Text PDF

Expanding the phenotype and genotype spectrum of TAOK1 neurodevelopmental disorder and delineating TAOK2 neurodevelopmental disorder.

Genet Med

December 2024

Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK; Division of Clinical Medicine, University of Sheffield, Sheffield, UK. Electronic address:

Purpose: The TAOK proteins are a group of serine/threonine-protein kinases involved in signalling pathways, cytoskeleton regulation, and neuronal development. TAOK1 variants are associated with a neurodevelopmental disorder (NDD) characterized by distinctive facial features, hypotonia and feeding difficulties. TAOK2 variants have been reported to be associated with autism and early-onset obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!