ACS Chem Neurosci
Department of Pharmacology and Physiology , Drexel University College of Medicine, Philadelphia , Pennsylvania 19102 , United States.
Published: March 2018
Dysfunction of excitatory amino acid transporters (EAATs) has been implicated in the pathogenesis of various neurological disorders, such as stroke, brain trauma, epilepsy, and neurodegenerative diseases, among others. EAAT2 is the main subtype responsible for glutamate clearance in the brain, having a key role in regulating transmission and preventing excitotoxicity. Therefore, compounds that increase the expression or activity of EAAT2 have therapeutic potential for neuroprotection. Previous studies identified molecular determinants for EAAT2 transport stimulation in a structural domain that lies at the interface of the rigid trimerization domain and the central substrate binding transport domain. In this work, a hybrid structure based approach was applied, based on this molecular domain, to create a high-resolution pharmacophore. Subsequently, virtual screening of a library of small molecules was performed, identifying 10 hit molecules that interact at the proposed domain. Among these, three compounds were determined to be activators, four were inhibitors, and three had no effect on EAAT2-mediated transport in vitro. Further characterization of the two best ranking EAAT2 activators for efficacy, potency, and selectivity for glutamate over monoamine transporters subtypes and NMDA receptors and for efficacy in cultured astrocytes is demonstrated. Mutagenesis studies suggest that the EAAT2 activators interact with residues forming the interface between the trimerization and transport domains. These compounds enhance the glutamate translocation rate, with no effect on substrate interaction, suggesting an allosteric mechanism. The identification of these novel positive allosteric modulators of EAAT2 offers an innovative approach for the development of therapies based on glutamate transport enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.7b00308 | DOI Listing |
J Biol Eng
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.
View Article and Find Full Text PDFBMC Surg
January 2025
Department of Obstetrics and Gynaecology, Krankenhaus Sachsenhausen, Frankfurt Am Main, Germany.
Background: Total laparoscopic hysterectomy (TLH) is nowadays the standard to treat benign and malignant disease occurring in the uterus, but the number of robotic-assisted surgeries is increasing worldwide. To facilitate the handling of sutures in a bi- and tri-dimensional plane, a new type of suture material has been developed, named barbed sutures, which are in use in different indications. In comparison to conventional suture materials, the barbs anchor the suture in the tissue, provide tissue approximation and prevent slippage without the need for knot tying.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan.
SNARE proteins play a pivotal role in membrane fusion and various cellular processes. Accurate identification of SNARE proteins is crucial for elucidating their functions in both health and disease contexts. This chapter presents a novel approach employing multiscan convolutional neural networks (CNNs) combined with position-specific scoring matrix (PSSM) profiles to accurately recognize SNARE proteins.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
A comprehensive genome-wide association study (GWAS) has validated the identification of the Plexin-A 4 (PLXNA4) gene as a novel susceptibility factor for Alzheimer's disease (AD). Nonetheless, the precise role of PLXNA4 gene polymorphisms in the pathophysiology of AD remains to be established. Consequently, this study is aimed at exploring the relationship between PLXNA4 gene polymorphisms and neuroimaging phenotypes intimately linked to AD.
View Article and Find Full Text PDFDrug Discov Today
January 2025
State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050 China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050 China. Electronic address:
Metalloenzymes are important therapeutic targets for a variety of human diseases. Computational approaches have recently emerged as effective tools to understand metal-ligand interactions and expand the structural diversity of both metalloenzyme inhibitors (MIs) and metal-binding pharmacophores (MBPs). In this review, we highlight key advances in currently available fine-tuning modeling methods and data-driven cheminformatic approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.