We propose the concept of atom-mediated spontaneous parametric down-conversion, in which photon-pair generation can take place only in the presence of a single two-level emitter, relying on the bandgap evanescent modes of a nonlinear periodic waveguide. Using a guided signal mode, an evanescent idler mode, and an atom-like emitter with the idler's transition frequency embedded in the structure, we find a heralded excitation mechanism, in which the detection of a signal photon outside the structure heralds the excitation of the embedded emitter. We use a rigorous Green's function quantization method to model this heralding mechanism in a 1D periodic waveguide and determine its robustness against losses.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.42.004724DOI Listing

Publication Analysis

Top Keywords

atom-mediated spontaneous
8
spontaneous parametric
8
parametric down-conversion
8
periodic waveguide
8
down-conversion periodic
4
periodic waveguides
4
waveguides propose
4
propose concept
4
concept atom-mediated
4
down-conversion photon-pair
4

Similar Publications

We propose the concept of atom-mediated spontaneous parametric down-conversion, in which photon-pair generation can take place only in the presence of a single two-level emitter, relying on the bandgap evanescent modes of a nonlinear periodic waveguide. Using a guided signal mode, an evanescent idler mode, and an atom-like emitter with the idler's transition frequency embedded in the structure, we find a heralded excitation mechanism, in which the detection of a signal photon outside the structure heralds the excitation of the embedded emitter. We use a rigorous Green's function quantization method to model this heralding mechanism in a 1D periodic waveguide and determine its robustness against losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!