Neuronal cell death is a normal process during central nervous system (CNS) development and is also involved in the death of motor neurons in diverse spinal motor neuron degenerative diseases. Here, we investigated the neuroprotective effect of secretory factors released from human gingival mesenchymal stem cells (hGMSCs) in mechanically injured murine motor-neuron-like NSC-34 cells. The cells were exposed to scratch injury and the markers for apoptosis and oxidative stress were examined. Immunocytochemistry results showed that proapoptotic markers cleaved caspase-3 and Bax were elevated while anti-apoptotic protein Bcl-2 was suppressed in scratch-injured NSC-34 cells. Oxidative stress markers SOD-1, inducible nitric oxide synthase (iNOS), Cox-2, and proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were activated. Conditioned medium (CM) derived from hGMSCs (hGMSC-CM) significantly blocked the cell death by suppressing SOD-1, iNOS, TNF-α, cleaved caspase-3, and Bax. Bcl-2 and anti-inflammatory cytokine anti-interleukin 10 (IL-10) were increased in hGMSC-CM-treated injured cells. Moreover, hGMSC-CM treatment upregulated neurotrophins anti-brain-derived neurotrophic factor (BDNF) and NT3. Western blot data of hGMSC-CM revealed the presence of neurotrophins nerve growth factor (NGF), NT3, anti-inflammatory cytokines IL-10, and transforming growth factor beta (TGF-β), suggesting their positive role to elicit neuroprotection. Our results propose that hGMSC-CM may serve as a simple and potential autologous therapeutic tool to treat motor neuron injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806806PMC
http://dx.doi.org/10.1177/0394632017740976DOI Listing

Publication Analysis

Top Keywords

nsc-34 cells
12
cell death
12
conditioned medium
8
human gingival
8
gingival mesenchymal
8
mesenchymal stem
8
stem cells
8
motor-neuron-like nsc-34
8
motor neuron
8
oxidative stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!