The synthesis and characterization of a family of nine pH-responsive, diblock copolymers designed to effectively deliver nucleic acids are reported. The stabilizing A block is comprised of an oligo(ethylene glycol) methyl ether methacrylate to impart water solubility. The cationic blocks of varying degrees of polymerization (DPs) are derived from three pH responsive, tertiary amine-containing methacrylates capable of complexing negatively charged nucleic acids. The cytotoxicity studies utilizing human embryonic kidney cells (HEK-293) and Michigan Cancer Foundation-7 (MCF-7) breast cancer cells indicate no decrease of cell viability with the diblock copolymers, with the exception of the two highest DPs of the cationic blocks with ethyl-substitutes tertiary amine. Gene knockdown experiments indicate high siRNA delivery and MYC gene knockdown in MCF-7 breast cancer cells for eight of the nine studied block copolymers. The results of the current study enable further development of the pH-responsive copolymer family for promising nucleic acid delivery vehicles applicable for clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201700225 | DOI Listing |
J Am Chem Soc
January 2025
Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
The Cancer Hospital Affiliated to Shandong First Medical University (Shandong Cancer Prevention Research Institute, Shandong Cancer Hospital), Jinan 250117, China.
Introduction: In this study, we analyzed the psychological aspects of coronavirus disease 2019 (COVID-19) patients who were discharged from the hospitals in Shanghai, China, and later had positive nucleic acid retest results for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection (re-positive COVID-19). The purpose was to gain clarity on the patients' needs and to provide evidence for the medical staff to deliver scientific and targeted health care to the patients.
Methodology: We screened patients who tested positive for SARS-CoV-2 Omicron variant infection by nucleic acid testing after having previously recovered from a COVID-19 infection and being discharged from Shanghai shelter hospitals or COVID-19-designated hospitals from April 3, 2022, to May 10, 2022.
Virol J
January 2025
Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.
Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!