A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of White Noise Achilles Tendon Vibration on Quiet Standing and Active Postural Positioning. | LitMetric

Applying white noise vibration to the ankle tendons has previously been used to improve passive movement detection and alter postural control, likely by enhancing proprioceptive feedback. The aim of the present study was to determine if similar methods focused on the ankle plantarflexors affect the performance of both quiet standing and an active postural positioning task, in which participants may be more reliant on proprioceptive feedback from actively contracting muscles. Twenty young, healthy participants performed quiet standing trials and active postural positioning trials designed to encourage reliance on plantarflexor proprioception. Performance under normal conditions with no vibration was compared to performance with 8 levels of vibration amplitude applied to the bilateral Achilles tendons. Vibration amplitude was set either as a percentage of sensory threshold (n = 10) or by root-mean-square (RMS) amplitude (n = 10). No vibration amplitude had a significant effect on quiet standing. In contrast, accuracy of the active postural positioning task was significantly (P = .001) improved by vibration with an RMS amplitude of 30 μm. Setting vibration amplitude based on sensory threshold did not significantly affect postural positioning accuracy. The present results demonstrate that appropriate amplitude tendon vibration may hold promise for enhancing the use of proprioceptive feedback during functional active movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105892PMC
http://dx.doi.org/10.1123/jab.2016-0359DOI Listing

Publication Analysis

Top Keywords

postural positioning
20
quiet standing
16
active postural
16
vibration amplitude
16
proprioceptive feedback
12
vibration
9
white noise
8
tendon vibration
8
standing active
8
enhancing proprioceptive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!