To understand the osteogenic effect of the middle layer of the silk cocoon, sericin was examined for its cellular effects associated with tumor necrosis factor-α (TNF-α) signaling in this study. The fragmented sericin proteins in the silk mat were evaluated for the TNF-α expression level in murine macrophages. The concentration of protein released from silk mats was higher in the outermost and the innermost layers than in the middle layers, and the protein released from the silk mat was identified as sericin. The level of TNF-α in murine macrophages was dependent on the applied concentration of sericin, and the expression of genes associated with osteogenesis in osteoblast-like cells was dependent on the applied concentration of TNF-α. In animal experiments, silk mats from the middle layers led to a higher regenerated bone volume than silk mats from the innermost layer or the outermost layer. If TNF-α protein was incorporated into the silk mats from the middle layers, bone regeneration was suppressed compared with unloaded silk mats from the middle layers. Accordingly, silk mats from the silk cocoon can be considered to be a fragmented sericin-secreting carrier, and the level of sericin secretion is associated with TNF-α induction and bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686134PMC
http://dx.doi.org/10.1038/s41598-017-15687-wDOI Listing

Publication Analysis

Top Keywords

silk mats
24
middle layers
16
bone regeneration
12
released silk
12
silk mat
12
mats middle
12
silk
11
necrosis factor-α
8
silk cocoon
8
murine macrophages
8

Similar Publications

Evaluation of Sericin/Polyvinyl Alcohol Mixtures for Developing Porous and Stable Structures.

Biomimetics (Basel)

January 2025

Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.

Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.

View Article and Find Full Text PDF

The Impact of Green Physical Crosslinking Methods on the Development of Sericin-Based Biohydrogels for Wound Healing.

Biomimetics (Basel)

August 2024

Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.

Silk sericin (SS)-based hydrogels show promise for wound healing due to their biocompatibility, moisture regulation, and cell proliferation properties. However, there is still a need to develop green crosslinking methods to obtain non-toxic, absorbent, and mechanically strong SS hydrogels. This study investigated the effects of three green crosslinking methods, annealing treatment (T), exposure to an absolute ethanol vapor atmosphere (V.

View Article and Find Full Text PDF

Hyaluronic-acid- and silk-fibroin-based nanofibrous mats loaded with proanthocyanidins and collagen peptides were fabricated as multifunctional facial masks using electrospinning. Their morphology, hygroscopicity and moisture retention, DPPH, ABTS free radical scavenging abilities, and cytocompatibility were investigated. The results showed that the nanofibrous mats were dense and uniform, with an average diameter ranging from 300 to 370 nm.

View Article and Find Full Text PDF

Hybrid structures made of natural-synthetic polymers have been interested due to high biological features combining promising physical-mechanical properties. In this research, a hybrid dressing consisting of a silk fibroin (SF)/polyvinyl alcohol (PVA) nanofibers and sodium alginate (SA)/gum tragacanth (GT) hydrogel incorporating cardamom extract as an antibacterial agent was prepared. Accordingly, SF was extracted from cocoons followed by electrospinning in blend form with PVA (SF/PVA ratio: 1:1) under the voltage of 18 kV and the distances of 15 cm.

View Article and Find Full Text PDF

Choosing suitable wound dressings is crucial for effective wound healing. Spun scaffolds with bioactive molecule functionalization are gaining attention as a promising approach to expedite tissue repair and regeneration. Here, we present the synthesis of novel multifunctional quercetin with morpholine and pyridine functional motifs (QFM) embedded in silk fibroin (SF)-spun fibers (SF-QFM) for preclinical skin repair therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!