Iron is an essential metal for all organisms, yet disruption of its homeostasis, particularly in labile forms that can contribute to oxidative stress, is connected to diseases ranging from infection to cancer to neurodegeneration. Iron deficiency is also among the most common nutritional deficiencies worldwide. To advance studies of iron in healthy and disease states, we now report the synthesis and characterization of iron-caged luciferin-1 (ICL-1), a bioluminescent probe that enables longitudinal monitoring of labile iron pools (LIPs) in living animals. ICL-1 utilizes a bioinspired endoperoxide trigger to release d-aminoluciferin for selective reactivity-based detection of Fe with metal and oxidation state specificity. The probe can detect physiological changes in labile Fe levels in live cells and mice experiencing iron deficiency or overload. Application of ICL-1 in a model of systemic bacterial infection reveals increased iron accumulation in infected tissues that accompany transcriptional changes consistent with elevations in both iron acquisition and retention. The ability to assess iron status in living animals provides a powerful technology for studying the contributions of iron metabolism to physiology and pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715752PMC
http://dx.doi.org/10.1073/pnas.1708747114DOI Listing

Publication Analysis

Top Keywords

iron
10
labile iron
8
iron accumulation
8
iron deficiency
8
living animals
8
vivo bioluminescence
4
bioluminescence imaging
4
labile
4
imaging labile
4
accumulation murine
4

Similar Publications

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

The Jezero crater floor features a suite of related, iron-rich lavas that were examined and sampled by the Mars 2020 rover Perseverance, and whose textures, minerals, and compositions were characterized by the Planetary Instrument for X-ray Lithochemistry (PIXL). This suite, known as the Máaz formation (fm), includes dark-toned basaltic/trachy-basaltic rocks with intergrown pyroxene, plagioclase feldspar, and altered olivine and overlying trachy-andesitic lava with reversely zoned plagioclase phenocrysts in a K-rich groundmass. Feldspar thermal disequilibrium textures indicate that they were carried from their crustal staging area.

View Article and Find Full Text PDF

Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.

View Article and Find Full Text PDF

Pomegranate peel powder is used as a functional ingredient in the development of nutritional bars. Pomegranate (Punica granatum) is well known fruit belongs to punicaceae family having multiple health benefits, not only limited to its edible parts but also in its non-edible parts mostly the peel. Fruit wastes are rich source of nutrients, and can be used for the development of functional food products.

View Article and Find Full Text PDF

Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

Adv Healthc Mater

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!