Background: In many Latin American countries, official influenza reports are neither timely nor complete, and surveillance of influenza-like illness (ILI) remains thin in consistency and precision. Public participation with mobile technology may offer new ways of identifying nonmedically attended cases and reduce reporting delays, but no published studies to date have assessed the viability of ILI surveillance with mobile tools in Latin America. We implemented and assessed an ILI-tailored mobile health (mHealth) participatory reporting system.
Objective: The objectives of this study were to evaluate the quality and characteristics of electronically collected data, the user acceptability of the symptom reporting platform, and the costs of running the system and of identifying ILI cases, and to use the collected data to characterize cases of reported ILI.
Methods: We recruited the heads of 189 households comprising 584 persons during randomly selected home visits in Guatemala. From August 2016 to March 2017, participants used text messages or an app to report symptoms of ILI at home, the ages of the ILI cases, if medical attention was sought, and if medicines were bought in pharmacies. We sent weekly reminders to participants and compensated those who sent reports with phone credit. We assessed the simplicity, flexibility, acceptability, stability, timeliness, and data quality of the system.
Results: Nearly half of the participants (47.1%, 89/189) sent one or more reports. We received 468 reports, 83.5% (391/468) via text message and 16.4% (77/468) via app. Nine-tenths of the reports (93.6%, 438/468) were received within 48 hours of the transmission of reminders. Over a quarter of the reports (26.5%, 124/468) indicated that at least someone at home had ILI symptoms. We identified 202 ILI cases and collected age information from almost three-fifths (58.4%, 118/202): 20 were aged between 0 and 5 years, 95 were aged between 6 and 64 years, and three were aged 65 years or older. Medications were purchased from pharmacies, without medical consultation, in 33.1% (41/124) of reported cases. Medical attention was sought in 27.4% (34/124) of reported cases. The cost of identifying an ILI case was US $6.00. We found a positive correlation (Pearson correlation coefficient=.8) between reported ILI and official surveillance data for noninfluenza viruses from weeks 41 (2016) to 13 (2017).
Conclusions: Our system has the potential to serve as a practical complement to respiratory virus surveillance in Guatemala. Its strongest attributes are simplicity, flexibility, and timeliness. The biggest challenge was low enrollment caused by people's fear of victimization and lack of phone credit. Authorities in Central America could test similar methods to improve the timeliness, and extend the breadth, of disease surveillance. It may allow them to rapidly detect localized or unusual circulation of acute respiratory illness and trigger appropriate public health actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705859 | PMC |
http://dx.doi.org/10.2196/publichealth.8610 | DOI Listing |
J Clin Transl Hepatol
January 2025
Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
Background And Aims: Pyrrolizidine alkaloids (PAs), widely distributed in plants, are known to induce liver failure. Hepatic platelet accumulation has been reported during the progression of PA-induced liver injury (PA-ILI). This study aimed to investigate the mechanisms underlying platelet accumulation in PA-ILI.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Human brucellosis remains a significant public health issue in the Ili Kazak Autonomous Prefecture, Xinjiang, China. To assist local Centers for Disease Control and Prevention (CDC) in promptly formulate effective prevention and control measures, this study leveraged time-series data on brucellosis cases from February 2010 to September 2023 in Ili Kazak Autonomous Prefecture. Three distinct predictive modeling techniques-Seasonal Autoregressive Integrated Moving Average (SARIMA), eXtreme Gradient Boosting (XGBoost), and Long Short-Term Memory (LSTM) networks-were employed for long-term forecasting.
View Article and Find Full Text PDFVirol J
December 2024
Department of Laboratory Medicine, University Town Hospital of Chongqing Medical University, No. 55, Middle Road University, Chongqing, 410331, China.
Objectives: To analyze the molecular epidemiological characteristics of influenza viruses in influenza-like cases in Chongqing Hi-Tech Zone, China, to provide data support and a scientific basis for optimizing influenza prevention and control strategies in the region.
Materials And Methods: A retrospective analysis was conducted on the molecular epidemiological characteristics of influenza viruses in influenza-like cases at a hospital in Chongqing Hi-Tech Zone from 2021 to 2024. Colloidal gold detection of viral antibodies, fluorescent PCR detection of nucleic acids, and gene sequencing were used to identify the different subtypes.
Vaccine
February 2025
Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing, China. Electronic address:
Introduction: The objective of our study was to estimate the influenza vaccine effectiveness for 2023/24 epidemic of co-circulating influenza A(H3N2) and B(Victoria) viruses in Beijing, China.
Methods: The surveillance-based study included all swabbed patients through influenza virological surveillance in Beijing, between October 2023 and March 2024. A Test-Negative Design(TND) was used to estimate influenza vaccine effectiveness(VE) against medically- attended laboratory-confirmed influenza in outpatient settings, also calculated the influenza vaccination rate(IVR).
Gels
December 2024
State Key Laboratory of Digital Medical Engineering, Basic Medicine Research and Innovation Center of Ministry of Education, Southeast University, Nanjing 211102, China.
Tumor whole-cell vaccines are designed to introduce a wide range of tumor-associated antigens into the body to counteract the immunosuppression caused by tumors. In cases of lymphoma of which the specific antigen is not yet determined, the tumor whole-cell vaccine offers distinct advantages. However, there is still a lack of research on an effective preparation method for the lymphoma whole-cell vaccine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!