Peracetic acid (PAA) is a corrosive chemical with a pungent odor, which is extensively used in occupational settings and causes various health hazards in exposed workers. Currently, there is no US government agency recommended method that could be applied universally for the sampling and analysis of PAA. Legacy methods for determining airborne PAA vapor levels frequently suffered from cross-reactivity with other chemicals, particularly hydrogen peroxide (HO). Therefore, to remove the confounding factor of cross-reactivity, a new viable, sensitive method was developed for assessment of PAA exposure levels, based on the differential reaction kinetics of PAA with methyl p-tolylsulfide (MTS), relative to HO, to preferentially derive methyl p-tolysulfoxide (MTSO). By quantifying MTSO concentration produced in the liquid capture solution from an air sampler, using an internal standard, and utilizing the reaction stoichiometry of PAA and MTS, the original airborne concentration of PAA is determined. After refining this liquid trap high-performance liquid chromatography (HPLC) method in the laboratory, it was tested in five workplace settings where PAA products were used. PAA levels ranged from the detection limit of 0.013 parts per million (ppm) to 0.4 ppm. The results indicate a viable and potentially dependable method to assess the concentrations of PAA vapors under occupational exposure scenarios, though only a small number of field measurements were taken while field testing this method. However, the low limit of detection and precision offered by this method makes it a strong candidate for further testing and validation to expand the uses of this liquid trap HPLC method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0748233717739165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!