Background: Approximately 20-25% of ovarian cancers are attributable to germline or somatic mutations, resulting in defects in the homologous recombination pathway. Inactivation of these genes can also be mediated by epigenetic changes, e.g., hypermethylation of CpG islands in the promoter regions. In such homologous recombination deficient tumors, platinum based chemotherapy is in general effective, however, loss of hypermethylation might lead to refractory disease. The aim of this study was to evaluate the stability of promoter hypermethylation in recurrent disease after platinum based chemotherapy.
Methods: Tumor tissue from 76 patients with primary and 48 patients with platinum-sensitive recurrent high-grade ovarian cancer was collected. In a subgroup of 12 patients, 'paired' tumor tissue from primary and recurrent surgery was available. promoter methylation status was assessed using methylation specific polymerase chain reaction and was verified by Sanger Sequencing.
Results: 73.7% (56/76) of primary and 20.8% (10/48) of recurrent tumors displayed promoter hypermethylation. promoter methylation status was not associated with progression-free- or overall survival. In the paired subgroup 83.3% (10/12) of the primary vs. 16.7% (2/12) of the recurrent tumors showed hypermethylation. In eight patients loss of hypermethylation was observed, whereas two patients had stable methylation status.
Conclusions: Loss of promoter methylation may be a mechanism to restore function in recurrent disease. However, currently the clinical significance is still unclear and should be evaluated in prospective clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669950 | PMC |
http://dx.doi.org/10.18632/oncotarget.20945 | DOI Listing |
Discov Oncol
January 2025
Clinical Research and Development Center, Division of Nephrology, Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Purpose: Clear cell renal cell carcinoma (ccRCC) is resistant to radiotherapy and chemotherapy. Thus, it is necessary to find new diagnostic markers and therapeutic targets to increase the overall outcomes of ccRCC. Recent studies have shown that therapeutic methods that interfere with the energy transfer system can also positively affect the treatment process.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
The First Clinical Medical School, Lanzhou University.
This study investigated whether the neddylation inhibitor MLN4924 induces aberrant DNA methylation patterns in acute myeloid leukemia and contributes to the reactivation of tumor suppressor genes. DNA methylation profiles of Kasumi-1 and KU812 acute myeloid leukemia cell lines before and after MLN4924 treatment were generated using the 850K Methylation BeadChip. RNA sequencing was used to obtain transcriptomic profiles of Kasumi-1 cells.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Urology, Tianjin First Central Hospital, Tianjin, China.
miR-155 exhibits variable expression in different tumors and fulfills diverse biological roles. However, specific molecular mechanisms by which miR-155-5p, which is under-expressed in prostate cancer (PCa), operates are yet to be elucidated. The role of the enhancer of zeste 2 (EZH2)/miR-155-5p axis in PCa was determined by using bioinformatics tools and performing luciferase reporter assay, chromatin immunoprecipitation PCR, CCK-8 assays, cell migration and invasion assays, RNA isolation, reverse transcription quantity (RT-qPCR) and Western blot.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
Background: Whole genome methylation sequencing (WGMS) in blood identifies extensive differential DNA methylation between persons who are cognitively unimpaired (CU) and those with late-onset dementia due to Alzheimer's disease (AD). Here we investigate differentially methylated positions (DMPs) in persons with mild cognitive impairment (MCI) compared to persons with and without AD.
Method: WGMS data quantified DNA methylation levels at 25,406,945 CpG loci in 382 blood samples from 99 persons with MCI, 109 persons with AD and 174 cognitively unimpaired persons in the Wisconsin Alzheimer's Disease Research Center (WADRC) and the Wisconsin Registry for Alzheimer's Prevention (WRAP).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!