miR-493-5p downregulation has emerged as a critical player in cancer progression yet, the underlying mechanisms of miR-493-5p expression pattern and its function in prostate cancer remains to be elucidated. Here, we illustrate that miR-493-5p is frequently downregulated in prostate cancer, at least partially due to altered DNA methylation. miR-493-5p functions as a tumor suppressor in prostate cancer cells. c-Met, CREB1 and EGFR are downstream target genes of miR-493-5p. miR-493-5p inhibits EMT via AKT/GSK-3β/Snail signaling in prostate cancer. Taken together, our study identified c-Met, CREB1, EGFR and miR-493-5p establish a regulatory loop in prostate cancer, which could prove useful in the development of effective and therapies against prostate cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669891 | PMC |
http://dx.doi.org/10.18632/oncotarget.19398 | DOI Listing |
Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.
View Article and Find Full Text PDFBackground: In TALAPRO-2, the poly(ADP-ribose) polymerase inhibitor talazoparib plus the androgen receptor-signaling inhibitor enzalutamide improved radiographic progression-free survival (rPFS) versus placebo plus enzalutamide (hazard ratio [HR] = 0.63; 95% CI, 0.51-0.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.
View Article and Find Full Text PDFCancer Metab
December 2024
Department of Obstetrics and Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China.
World J Surg Oncol
December 2024
Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Background: To assess the clinical utility of PCA3 in the diagnostic accuracy, the correlation between PCA3 and biopsy or pathological characteristics and the performance of PCA3 to reduce the unnecessary biopsies in Chinese population.
Methods: A prospective study including patients with indication of prostate biopsies from 4 centers was conducted. All patients underwent PCA3 urine tests and prostate biopsies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!