The study focuses on the thermal and temperature sensitivity behavior of an optical fiber sensor device. In this article, a titanium nitride (TiN)-coated fiber Bragg grating (FBG) sensor fabricated using an ion beam sputtering system was investigated. The reflection spectra of the FBG sensor were tested using R-soft optical software to simulate the refractive index sensitivity. In these experiments, the temperature sensitivity of the TiN FBG was measured at temperatures ranging from 100 to 500 °C using an optical spectrum analyzer (OSA). The results showed that the temperature sensitivity of the proposed TiN FBG sensor reached 12.8 pm/°C for the temperature range of 100 to 300 °C and 20.8 pm/°C for the temperature range of 300 to 500 °C. Additionally, we found that the produced oxidation at temperatures of 400-500 °C caused a crack, with the crack becoming more and more obvious at higher and higher temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706244PMC
http://dx.doi.org/10.3390/ma10111297DOI Listing

Publication Analysis

Top Keywords

temperature sensitivity
12
fbg sensor
12
tin fbg
8
500 °c
8
pm/°c temperature
8
temperature range
8
sensor
5
temperature
5
fiber-optic thermal
4
thermal sensor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!