Objective: Rehabilitation interventions contribute to recovery of impaired postural control, but it remains a priority to optimize their effectiveness. A promising strategy may involve transcranial direct current stimulation (tDCS) of brain areas involved in fine-tuning of motor adaptation. This study explored the effects of cerebellar tDCS (ctDCS) on postural recovery from disturbance by Achilles tendon vibration.
Methods: Twenty-eight healthy volunteers participated in this sham-ctDCS controlled study. Standing blindfolded on a force platform, four trials were completed: 60 s quiet standing followed by 20 min active (anodal-tDCS, 1 mA, 20 min, N = 14) or sham-ctDCS (40 s, N = 14) tDCS; three quiet standing trials with 15 s of Achilles tendon vibration and 25 s of postural recovery. Postural steadiness was quantified as displacement, standard deviation and path derived from the center of pressure (COP).
Results: Baseline demographics and quiet standing postural steadiness, and backwards displacement during vibration were comparable between groups. However, active-tDCS significantly improved postural steadiness during vibration and reduced forward displacement and variability in COP derivatives during recovery.
Conclusions: We demonstrate that ctDCS results in short-term improvement of postural adaptation in healthy individuals.
Significance: Future studies need to investigate if multisession ctDCS combined with training or rehabilitation interventions can induce prolonged improvement of postural balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinph.2017.09.118 | DOI Listing |
J Aging Phys Act
January 2025
Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.
Amount of serial sitting and standing movements has been employed in clinical and research settings to assess legs' muscular strength. In this cross-sectional study, we aimed to test the correlation between the 30-s sit-to-stand power test (30STSp) outcome and body balance in older adults. We evaluated physically active male and female (n = 51) individuals with an age range of 60-80 years (M = 69.
View Article and Find Full Text PDFGait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.
View Article and Find Full Text PDFEquine Vet J
December 2024
Hartpury University, Equestrian Performance Research Centre, Gloucester, UK.
Background: Noseband adjustment should avoid discomfort and allow some jaw movement.
Objectives: To determine pressure beneath a cavesson noseband at five tightness levels during standing and chewing. It was hypothesised that increased noseband tightness is associated with increases in nasal and mandibular pressures while standing and chewing, accompanied by increases in eye temperature and blink rate.
Exp Brain Res
December 2024
Motor Behavior and Adapted Physical Activity Laboratory, Aristotle University, Thessaloniki, Greece.
Imperceptible noisy galvanic vestibular stimulation (nGVS) improves standing balance due to the presence of stochastic resonance (SR). There is, however, a lack of consensus regarding the optimal levels and type of noise used to elicit SR like dynamics. We aimed to confirm the presence of SR behavior in the vestibular system of young healthy adults by examining postural responses to increasing amplitudes of white and pink noise stimulation scaled to individual cutaneous perceptual threshold.
View Article and Find Full Text PDFGait Posture
December 2024
KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada; Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Physical Therapy, University of Toronto, Toronto, ON, Canada. Electronic address:
Background: Many objective measures of balance control, including force plate measures of standing balance, lack sufficient validation for use in the stroke population.
Research Questions: Do force plate measures of quiet standing balance during the sub-acute stage of stroke recovery have concurrent validity (i.e.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!