Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans.

Sci Total Environ

Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China. Electronic address:

Published: April 2018

Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e. water column) and benthic (i.e. sediment) environments. We investigated the toxic effects of five common types of microplastics: polyamides (PA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS) particles. Results showed no or low lethality in D. rerio after exposure for 10d at 0.001-10.0mgL microplastics. The PA, PE, PP and/or PVC microplastics with ~70μm size caused intestinal damage including cracking of villi and splitting of enterocytes. Exposure to 5.0mgm microplastics for 2d significantly inhibited survival rates, body length and reproduction of C. elegans. Moreover, exposure to microplastics reduced calcium levels but increased expression of the glutathione S-transferase 4 enzyme in the intestine, which indicates intestinal damage and oxidative stress are major effects of microplastic exposure. Among 0.1, 1.0 and 5.0μm sizes of fluorescently labeled PS, 1.0μm particles caused the highest lethality, the maximum accumulation, the lowest Ca level in the intestine and the highest expression of glutathione S-transferase 4 in nematodes. Taken together, these findings suggest that intestinal damage is a key effect of microplastics; and that the toxicity of microplastics is closely dependent on their size, rather than their composition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.11.103DOI Listing

Publication Analysis

Top Keywords

intestinal damage
16
zebrafish danio
8
danio rerio
8
rerio nematode
8
nematode caenorhabditis
8
caenorhabditis elegans
8
microplastics
8
microplastic exposure
8
expression glutathione
8
glutathione s-transferase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!