Recent clinical trials have demonstrated that the immense majority of acute promyelocytic leukemia (APL) patients can be definitively cured by the combination of two targeted therapies: retinoic acid (RA) and arsenic. Mouse models have provided unexpected insights into the mechanisms involved. Restoration of PML nuclear bodies upon RA- and/or arsenic-initiated PML/RARA degradation is essential, while RA-triggered transcriptional activation is dispensable for APL eradication. Mutations of the arsenic-binding site of PML/RARA, but also PML, have been detected in therapy-resistant patients, demonstrating the key role of PML in APL cure. PML nuclear bodies are druggable and could be harnessed in other conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ccell.2017.10.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!