Upgrading of primary alcohols by C-H bond breaking currently requires temperatures of >200 °C. In this work, new understanding from simulation of a temperature-programmed reaction study with methanol over a CeO(111) surface shows C-H bond breaking and the subsequent desorption of formaldehyde, even below room temperature. This is of particular interest because CeO is a naturally abundant and inexpensive metal oxide. We combine density functional theory and kinetic Monte Carlo methods to show that the low-temperature C-H bond breaking occurs via disproportionation of adjacent methoxy species. We further show from calculations that the same transition state with comparable activation energy exists for other primary alcohols; with ethanol, 1-propanol, and 1-butanol explicitly calculated. These findings indicate a promising class of transition states to search for in seeking low-temperature C-H bond breaking over inexpensive oxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b02683 | DOI Listing |
The synthesis of a transient cationic phosphaborene [(Mes*)P=B(CAAC)]+ (Mes* = 2,4,6,-trit-tert-butylphenyl, CAAC = cyclic alkylamino carbene) by halide abstraction from the B-brominated analogue is reported. This species was found to undergo rapid and selective intramolecular aliphatic C-H bond activation to yield a phosphinoborenium cation, which undergoes facile deprotonation to give a cyclic base-stabilized phosphaborene. Computational investigation of the mechanism of C-H activation indicates a boron-centred activation route with an exceptionally low barrier of 8 kJ mol-1, followed by a nearly barrierless hydride migration from boron to phosphorus.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
RIKEN: Rikagaku Kenkyujo, Center for Sustainable Resource Science, 2-1 Hirosawa, 351-0198, Wako, JAPAN.
Transition-metal-catalyzed selective and efficient activation of an inert C-H bond in an organic substrate is of importance for the development of streamlined synthetic methodologies. An attractive approach is the design of a metal catalyst capable of recognizing an organic substrate through noncovalent interactions to control reactivity and selectivity. We report here a spirobipyridine ligand that bears a hydroxy group that recognizes pyridine and quinoline substrates through hydrogen bonding, and in combination with an iridium catalyst enables site-selective C-H borylation.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
The grafting of a -(CH)PR moiety on an NHC ligand backbone in the Mn(I) complex [Cp(CO)Mn(IMes)] followed by double deprotonation opens a route to bidentate ligands with extreme electron-donating character. Such remarkable electronic properties can even allow intramolecular sp C-H functionalization in typically inert square-planar Rh(I) dicarbonyl complexes.
View Article and Find Full Text PDFChem Sci
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!