Importance: Epicutaneous immunotherapy may have potential for treating peanut allergy but has been assessed only in preclinical and early human trials.
Objective: To determine the optimal dose, adverse events (AEs), and efficacy of a peanut patch for peanut allergy treatment.
Design, Setting, And Participants: Phase 2b double-blind, placebo-controlled, dose-ranging trial of a peanut patch in peanut-allergic patients (6-55 years) from 22 centers, with a 2-year, open-label extension (July 31, 2012-July 31, 2014; extension completed September 29, 2016). Patients (n = 221) had peanut sensitivity and positive double-blind, placebo-controlled food challenges to an eliciting dose of 300 mg or less of peanut protein.
Interventions: Randomly assigned patients (1:1:1:1) received an epicutaneous peanut patch containing 50 μg (n = 53), 100 μg (n = 56), or 250 μg (n = 56) of peanut protein or a placebo patch (n = 56). Following daily patch application for 12 months, patients underwent a double-blind, placebo-controlled food challenge to establish changes in eliciting dose.
Main Outcomes And Measures: The primary efficacy end point was percentage of treatment responders (eliciting dose: ≥10-times increase and/or reaching ≥1000 mg of peanut protein) in each group vs placebo patch after 12 months. Secondary end points included percentage of responders by age strata and treatment-emergent adverse events (TEAEs).
Results: Of 221 patients randomized (median age, 11 years [quartile 1, quartile 3: 8, 16]; 37.6% female), 93.7% completed the trial. A significant absolute difference in response rates was observed at month 12 between the 250-μg (n = 28; 50.0%) and placebo (n = 14; 25.0%) patches (difference, 25.0%; 95% CI, 7.7%-42.3%; P = .01). No significant difference was seen between the placebo patch vs the 100-μg patch. Because of statistical testing hierarchical rules, the 50-μg patch was not compared with placebo. Interaction by age group was only significant for the 250-μg patch (P = .04). In the 6- to 11-year stratum, the response rate difference between the 250-μg (n = 15; 53.6%) and placebo (n = 6; 19.4%) patches was 34.2% (95% CI, 11.1%-57.3%; P = .008); adolescents/adults showed no difference between the 250-μg (n = 13; 46.4%) and placebo (n = 8; 32.0%) patches: 14.4% (95% CI, -11.6% to 40.4%; P = .40). No dose-related serious AEs were observed. The percentage of patients with 1 or more TEAEs (largely local skin reactions) was similar across all groups in year 1: 50-μg patch = 100%, 100-μg patch = 98.2%, 250-μg patch = 100%, and placebo patch = 92.9%. The overall median adherence was 97.6% after 1 year; the dropout rate for treatment-related AEs was 0.9%.
Conclusions And Relevance: In this dose-ranging trial of peanut-allergic patients, the 250-μg peanut patch resulted in significant treatment response vs placebo patch following 12 months of therapy. These findings warrant a phase 3 trial.
Trial Registration: clinicaltrials.gov Identifier: NCT01675882.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820709 | PMC |
http://dx.doi.org/10.1001/jama.2017.16591 | DOI Listing |
Allergy
January 2025
Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
J Food Allergy
September 2020
From the Division of Allergy and Immunology, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
The goal of allergen-specific immunotherapy for treatment of immunoglobulin E (IgE) mediated food allergy is to safely and effectively modify the allergic response, providing protection against anaphylaxis via ongoing exposure to the triggering allergen. Targeted allergen exposure via application of allergen to the epidermis has emerged as a potentially promising approach to desensitization. Epicutaneous immunotherapy (EPIT) uses allergen embedded on an adhesive patch secured to the skin.
View Article and Find Full Text PDFAnn Allergy Asthma Immunol
September 2024
Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York. Electronic address:
The skin is the largest immunologic organ in the body and contains immune cells that play a role in both food allergen sensitization and desensitization. The dual allergen exposure hypothesis posits that sensitization to food allergens may occur with cutaneous exposure on inflamed skin, eg, atopic dermatitis, but early oral consumption generally leads to tolerance. However, only one-third of children with atopic dermatitis develop a food allergy, suggesting that there is a more complex mechanism for allergen sensitization.
View Article and Find Full Text PDFPediatr Allergy Immunol
April 2024
Pediatric Unit, ASST-Rhodense, RHO, Milan, Italy.
J Econ Entomol
June 2024
Department of Biology, Langston University, 701 Sammy Davis Jr. Drive, Langston, OK 73050, USA.
The number, timing, and fitness of colonizing parasitoids in fields of ephemeral crops often depend on factors external to the fields. We investigated cereal aphid parasitism in 23 winter wheat fields using sentinel plants infested with bird cherry-oat aphids, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), and we investigated the effect of parasitoids on cereal aphid population growth using exclusion and parasitoid-accessible cages infested with bird cherry-oat aphids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!