The reproductive system of a tree species has substantial impact on genetic diversity and structure within and among natural populations. Such information, should be considered when planning tree planting for forest restoration. Here, we describe the mating system and genetic diversity of an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced populations. Genetic analyses were performed based on 8 microsatellite loci. M. peruiferum presented a mixed mating system with evidence of biparental inbreeding (t^m-t^s = 0.118). We found low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected heterozygosity: 0.29 to 0.52). Based on Ne(v) within progeny, we suggest a sample size of 47 seed trees to achieve an effective population size of 100. The effective population sizes for the nursery-grown seedlings were much smaller Ne = 27.54-34.86) than that recommended for short term Ne ≥ 100) population conservation. Therefore, to obtain a reasonable genetic representation of native tree species and prevent problems associated with inbreeding depression, seedling production for restoration purposes may require a much larger sampling effort than is currently used, a problem that is further complicated by species with a mixed mating system. This study emphasizes the need to integrate species reproductive biology into seedling production programs and connect conservation genetics with ecological restoration.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esx096DOI Listing

Publication Analysis

Top Keywords

mating system
16
effective population
16
population size
12
seedling production
12
genetic diversity
12
overexploited neotropical
8
neotropical tree
8
tree myroxylon
8
myroxylon peruiferum
8
tree species
8

Similar Publications

Objectives: Maternal protein malnutrition alters brain functioning, impairing fetal development. Physical exercise during gestation benefits the fetal organism from maternal adaptive changes that may be neuroprotective. This study evaluated the effect of a low-protein diet associated with maternal voluntary physical activity (VPA) on rats' behavioral and brain electrophysiological parameters in the mother-pup dyad.

View Article and Find Full Text PDF

No evidence for phenotypic condition-dependent ejaculate allocation in response to sperm competition in a seed beetle.

Behav Ecol

November 2024

Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia.

Sperm competition is known to favor the evolution of male traits that confer an advantage in gaining fertilizations when females mate multiply. Ejaculate production can be costly and the strategic allocation of sperm in relation to the sperm competition environment is a taxonomically widespread phenomenon. However, variation among males in their ability to adjust ejaculate allocation has rarely been explored.

View Article and Find Full Text PDF

Establishment and Characterization of Bisexually Fertile Triploid Dwarf Surf Clam Mulinia lateralis.

Mar Biotechnol (NY)

December 2024

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.

Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids.

View Article and Find Full Text PDF

[Characterization of host factors and upon Zika virus infection by construction of gene knockout mice].

Sheng Wu Gong Cheng Xue Bao

December 2024

State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.

The effects of host factors ADP-ribosylation factor 4 (ARF4) and ADP-ribosylation factor 5 (ARF5) upon Zika virus (ZIKV) infection were characterized by construction of gene knockout mice via CRISPR-Cas9. Firstly, and genes were modified by the CRISPR-Cas9 system and then microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain or knockout (ARF4KO or ARF5KO) mice, and / double knockout mice were achieved by the mating between ARF4KO and ARF5KO mice (ARF4KO/ARF5KO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!