Objective: We aimed to evaluate the use of miR-200b as a prenatal transplacental therapy in the nitrofen rat model of abnormal lung development and congenital diaphragmatic hernia (CDH).
Background: Pulmonary hypoplasia (PH) and pulmonary hypertension determine mortality and morbidity in CDH babies. There is no safe medical prenatal treatment available. We previously discovered that higher miR-200b is associated with better survival in CDH babies. Here, we investigate the role of miR-200b in the nitrofen rat model of PH and CDH and evaluate its use as an in vivo prenatal therapy.
Methods: We profiled miR-200b expression during nitrofen-induced PH using RT-qPCR and in situ hybridization in the nitrofen rat model of PH and CDH. The effects of nitrofen on downstream miR-200b targets were studied in bronchial lung epithelial cells using a SMAD luciferase assay, Western blotting and Immunohistochemistry. We evaluated miR-200b as a lung growth promoting therapy ex vivo and in vivo using lung explant culture and transplacental prenatal therapy in the nitrofen rat model.
Results: We show that late lung hypoplasia in CDH is associated with (compensatory) upregulation of miR-200b in less hypoplastic lungs. Increasing miR-200b abundance with mimics early after nitrofen treatment decreases SMAD-driven TGF-β signaling and rescues lung hypoplasia both in vitro and in vivo. Also, prenatal miR-200b therapy decreases the observed incidence of CDH.
Conclusions: Our data indicate that miR-200b improves PH and decreases the incidence of CDH. Future studies will further exploit this newly discovered prenatal therapy for lung hypoplasia and CDH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SLA.0000000000002595 | DOI Listing |
Pediatr Surg Int
December 2024
Division of Pediatric Surgery, Department of Surgery, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.
Purpose: Circular RNAs (circRNAs) are stable, non-coding RNAs with tissue- and developmental-specific expression making them suitable biomarkers for congenital anomalies. Current circRNA discovery pipelines have focused on human and mouse. We aim to bridge this gap by combining bioinformatics resources and used circtial1 as a model candidate in the nitrofen rat model of congenital diaphragmatic hernia (CDH).
View Article and Find Full Text PDFOrphanet J Rare Dis
October 2024
Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain.
Pediatr Res
May 2024
Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
Background: The pathogenesis of congenital diaphragmatic hernia (CDH) depends on multiple factors. Activation of the DNA-sensing cyclic-GMP-AMP-synthase (cGAS) and Stimulator-of-Interferon-Genes (STING) pathway by double-stranded DNA (dsDNA) links environmental stimuli and inflammation. We hypothesized that nitrofen exposure alters cGAS and STING in human bronchial epithelial cells and fetal rat lungs.
View Article and Find Full Text PDFJ Pediatr Surg
September 2024
Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!