A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Raman Deuterium Isotope Probing Reveals Microbial Metabolism at the Single-Cell Level. | LitMetric

We illustrate that single-cell Raman microspectroscopy, coupled with deuterium isotope probing (Raman-DIP), provides a culture-independent and nondestructive approach to probe metabolic pathways of carbon substrates at the single-cell level. We found a distinguishable C-D vibration band at 2070-2300 cm in single-cell Raman spectra (SCRS) when Escherichia coli used deuterated glucose and Pseudomonas sp. used deuterated naphthalene as sole carbon sources. The intensity of the C-D band is proportional to the extent of deuteration in the carbon source, and as little as 5% deuteration can be distinguished by analysis of SCRS. It suggests that Raman-DIP could be used to semiquantitatively and sensitively indicate the metabolism of deuterated carbon source in microbes. A lower lipid conversion rate of deuterated naphthalene compared to that of deuterated glucose was observed, presumably owing to different anabolic pathways and membrane alteration. Apart from the C-D band shift from C-H, SCRS also reveal several isotopic shifts of the phenylalanine band, of which the positions correlate well with a computational model. A reduction in phenylalanine deuteration in Pseudomonas sp. compared to that in E. coli is due to the dilution effect of different pathways of phenylalanine biosynthesis in Pseudomonas sp. Collectively, we demonstrate that Raman-DIP can not only indicate metabolic activity using deuterated carbon sources but also reveal different metabolic pathways by analyzing SCRS. By harnessing such low-cost and versatile deuterated substrates, Raman-DIP has the potential to probe a wide range of metabolic pathways and functions at the single-cell level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b03461DOI Listing

Publication Analysis

Top Keywords

single-cell level
12
metabolic pathways
12
deuterium isotope
8
isotope probing
8
single-cell raman
8
deuterated glucose
8
deuterated naphthalene
8
carbon sources
8
c-d band
8
carbon source
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!