Degradation of branched-chain amino acids was studied in muscles of unloaded hind limbs from rats subjected to six days of tail-cast suspension. The total production of 14CO2 from uniformly labeled 14C-leucine, isoleucine, or valine, and the fluxes through leucine aminotransferase and alpha-ketoisocaproate dehydrogenase, which were measured using L-1-14C-leucine, were generally greater in the soleus and extensor digitorum longus muscles of unloaded than of weight-bearing hind limbs. Adrenalectomy abolished any difference in flux through the aminotransferase, whereas the administration of cortisol to adrenalectomized animals restored the greater flux in the unloaded soleus muscle. Adrenalectomy partially diminished the greater flux through alpha-ketoisocaproate dehydrogenase in the unloaded soleus, whereas cortisol (2 mg/100 g body weight) treatment increased this difference. In the extensor digitorum longus, adrenalectomy abolished the differences in both enzyme fluxes due to hind limb suspension. In this muscle, cortisol treatment increased these fluxes to a similar extent in both weight-bearing and suspended, adrenalectomized animals so that the normal difference was not restored. These results suggest that leucine catabolism in hind limb muscles of suspended rats was influenced primarily by increased circulating glucocorticoid hormones, which are elevated twofold to fourfold in these animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0026-0495(89)90248-5 | DOI Listing |
Front Nutr
January 2025
School of Sports Training, Chengdu Sport University, Chengdu, China.
Background: Branched-chain amino acids (BCAAs) are widely used as sports nutrition supplements. However, their impact on the rate of force development (RFD), an indicator of explosive muscle strength, has not yet been validated. This study aimed to assess the impact of BCAA supplementation on the RFD in college basketball players during simulated games.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Department of Environmental Health, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
Isoleucic acid (ILA) was identified in human patients with maple syrup urine disease (MSUD) half a century ago. MSUD patients, who are defective in the catabolism of branched-chain amino acids (BCAAs), that is, isoleucine, leucine, and valine, have urine with a unique maple syrup odour related to the accumulation of BCAA breakdown products, largely 2-keto acid derivatives and their reduced 2-hydroxy acids including ILA. A decade ago, ILA was identified in Arabidopsis thaliana.
View Article and Find Full Text PDFCommun Biol
January 2025
National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan.
Metabolic and neurological disorders commonly display dysfunctional branched-chain amino acid (BCAA) metabolism, though it is poorly understood how this leads to neurological damage. We investigated this by generating Drosophila mutants lacking BCAA-catabolic activity, resulting in elevated BCAA levels and neurological dysfunction, mimicking disease-relevant symptoms. Our findings reveal a reduction in neuronal AMP-activated protein kinase (AMPK) activity, which disrupts autophagy in mutant brain tissues, linking BCAA imbalance to brain dysfunction.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, China. Electronic address:
Objective: This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy.
Methods: A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!