Neural crest (NC) cells are a multipotent cell population with powerful migration ability during development. C-X-C chemokine receptor type 4 (CXCR4) is a chemokine receptor implicated to mediate NC migration in various species, whereas the underlying mechanism is not well documented yet. PAX3 is a critical transcription factor for the formation of neural crest and the migration and differentiation of NCs. In this study, we retrieved a potential PAX3 binding element in the promoter of the CXCR4 gene, and we further found that PAX3 could promote the expression of CXCR4 and facilitate the migration of NCs. We finally demonstrated that PAX3 could bind the promoter region of CXCR4 and increase CXCR4 transcription by luciferase assay and electrophoretic mobility shift assay (EMSA). These findings suggested that PAX3 is a pivotal modulator of NC migration via regulating CXCR4 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12031-017-0995-9 | DOI Listing |
J Pathol
January 2025
SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Université Paris Cité, Paris, France.
Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations.
View Article and Find Full Text PDFCells
January 2025
Department of Neurosciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.
Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.
Trends Neurosci
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Electronic address:
The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.
Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!