Unlabelled: Serum parathyroid hormone (PTH) was associated with increased bone turnover markers and cortical porosity of the inner transitional zone at the proximal femur. These results suggest that PTH through increased intracortical bone turnover leads to trabecularisation of inner cortical bone in postmenopausal women.

Introduction: Vitamin D deficiency leads to secondary hyperparathyroidism and increased risk for fractures, whereas its association with cortical porosity is less clear. We tested (i) whether serum 25-hydroxyvitamin D (25(OH)D) and PTH were associated with cortical porosity and (ii) whether the associations of 25(OH)D) and PTH with fracture risk are dependent on cortical porosity.

Methods: This case-control study included 211 postmenopausal women, 54-94 years old, with prevalent fractures and 232 controls from the Tromsø Study. Serum 25(OH)D, PTH, and bone turnover markers (procollagen type I N-terminal propeptide [PINP] and C-terminal cross-linking telopeptide of type I collagen [CTX]) were measured. Femoral subtrochanteric cortical and trabecular parameters were quantified using computed tomography, and femoral neck areal bone mineral density (FN aBMD) was quantified using dual-energy X-ray absorptiometry.

Results: Compared with controls, fracture cases exhibited reduced serum 25(OH)D and increased PTH, PINP, and CTX, increased femoral subtrochanteric cortical porosity, and reduced cortical thickness and FN aBMD (all, p < 0.05). Serum 25(OH)D was not associated with cortical parameters (all, p > 0.10). PTH was associated with increased PINP, CTX, and cortical porosity of the inner transitional zone and reduced trabecular bone volume/tissue volume and FN aBMD (p ranging from 0.003 to 0.054). Decreasing 25(OH)D and increasing PTH were associated with increased odds for fractures, independent of age, height, weight, calcium supplementation, serum calcium, cortical porosity, and thickness.

Conclusions: These data suggest that serum PTH, not 25(OH)D, is associated with increased intracortical bone turnover resulting in trabecularisation of the inner cortical bone; nevertheless, decreasing 25(OH)D) and increasing PTH are associated with fracture risk, independent of cortical porosity and thickness.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00198-017-4298-3DOI Listing

Publication Analysis

Top Keywords

cortical porosity
32
associated increased
20
pth associated
20
bone turnover
16
cortical
13
porosity inner
12
inner transitional
12
transitional zone
12
25ohd pth
12
pth
10

Similar Publications

High-resolution microCT analysis of sclerotic subchondral bone beneath bone-on-bone wear grooves in severe osteoarthritis.

Bone

January 2025

Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland. Electronic address:

Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size.

View Article and Find Full Text PDF

Patients with radiographic axial spondyloarthritis (r-axSpA) experience a higher prevalence of fragility fractures, though the pathophysiology of osteoporosis associated with this disease remains poorly understood. The objective of this study was to evaluate the histomorphometric data in r-axSpA patients. Male r-axSpA patients up to 55 years old were enrolled in this cross-sectional study.

View Article and Find Full Text PDF

Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.

View Article and Find Full Text PDF

Objectives: Alcoholic bone disease has been recognized in contemporary literature as a systemic effect of chronic ethanol consumption. However, evidence about the specific influence of alcoholic liver cirrhosis (ALC) on mandible bone quality is scarce. The aim of this study was to explore microstructural, compositional, cellular, and mechanical properties of the mandible in ALC individuals compared with a healthy control group.

View Article and Find Full Text PDF

Developing porous hip implants implementing topology optimization based on the bone remodelling model and fatigue failure.

J Mech Behav Biomed Mater

December 2024

Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; School of Mechanical Engineering, Technological University Dublin, Dublin, Ireland.

Article Synopsis
  • Total hip arthroplasty (THA) is a standard surgical procedure for hip joint replacement, but it can cause complications like stress shielding and cortical hypertrophy due to mechanical mismatches between solid implants and bone.
  • This study aims to create porous implants with adjustable mechanical properties using topology optimization, which may better integrate with bone tissue and reduce complications associated with solid implants.
  • Finite element analyses indicated that using porous implants instead of solid ones can enhance stress distribution in healthy bones, suggesting that optimized porous designs could significantly improve bone health by decreasing stress shielding effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!