The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666248 | PMC |
http://dx.doi.org/10.1098/rsos.170499 | DOI Listing |
Nature
November 2024
Department of Earth Sciences, University of Cambridge, Cambridge, UK.
A dearth of Mesozoic-aged, three-dimensional fossils hinders understanding of the origin of the distinctive skull and brain of modern (crown) birds. Here we report Navaornis hestiae gen. et sp.
View Article and Find Full Text PDFProc Biol Sci
September 2022
Department of Earth Sciences, University of Cambridge, Cambridge, UK.
Among terrestrial vertebrates, only crown birds (Neornithes) rival mammals in terms of relative brain size and behavioural complexity. Relatedly, the anatomy of the avian central nervous system and associated sensory structures, such as the vestibular system of the inner ear, are highly modified with respect to those of other extant reptile lineages. However, a dearth of three-dimensional Mesozoic fossils has limited our knowledge of the origins of the distinctive endocranial structures of crown birds.
View Article and Find Full Text PDFCurr Biol
August 2021
Department of Cell and Developmental Biology, University College London, London, UK.
Oculudentavis khaungraae was described based on a tiny skull trapped in amber. The slender tapering rostrum with retracted narial openings, large eyes, and short vaulted braincase led to its identification as the smallest avian dinosaur on record, comparable to the smallest living hummingbirds. Despite its bird-like appearance, Oculudentavis showed several features inconsistent with its original phylogenetic placement.
View Article and Find Full Text PDFAnat Rec (Hoboken)
August 2021
School of Earth Sciences, University of Bristol, Bristol, UK.
Birds and crocodiles show radically different patterns of brain development, and it is of interest to compare these to determine the pattern of brain growth expected in dinosaurs. Here we provide atlases of 3D brain (endocast) reconstructions for Alligator mississippiensis (alligator) and Struthio camelus (ostrich) through ontogeny, prepared as digital restorations from CT scans of stained head and dry skull specimens. Our morphometric analysis confirms that ostrich brains do not change significantly in shape during postnatal growth, whereas alligator brains unfold from a cramped bird-like shape in the hatchling to an elongate, straight structure in the adult.
View Article and Find Full Text PDFNature
March 2020
Beijing Advanced Sciences and Innovation Center, Chinese Academy of Sciences, Beijing, China.
Skeletal inclusions in approximately 99-million-year-old amber from northern Myanmar provide unprecedented insights into the soft tissue and skeletal anatomy of minute fauna, which are not typically preserved in other depositional environments. Among a diversity of vertebrates, seven specimens that preserve the skeletal remains of enantiornithine birds have previously been described, all of which (including at least one seemingly mature specimen) are smaller than specimens recovered from lithic materials. Here we describe an exceptionally well-preserved and diminutive bird-like skull that documents a new species, which we name Oculudentavis khaungraae gen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!