The third part of the catalogue of type material in the Helminthological Collection of the Oswaldo Cruz Institute/FIOCRUZ (CHIOC), comprising types deposited between 1979 and 2016, is presented to complement the first list of all types that was published in 1979. This part encompasses Acanthocephala, Nematoda and the other non-helminth phyla Cnidaria, Annelida, and Arthropoda. Platyhelminthes was covered in the first (Monogenoidea) and second (Rhabditophora Trematoda and Cestoda) parts of the catalogue published in September 2016 and March 2017, respectively. The present catalogue comprises type material for 116 species distributed across five phyla, nine classes, 50 families, and 80 genera. Specific names are listed systematically, followed by type host, infection site, type locality, and specimens with their collection numbers and references. Species classification and nomenclature are updated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674181PMC
http://dx.doi.org/10.3897/zookeys.711.14753DOI Listing

Publication Analysis

Top Keywords

type material
12
acanthocephala nematoda
8
phyla cnidaria
8
cnidaria annelida
8
annelida arthropoda
8
helminthological collection
8
collection oswaldo
8
oswaldo cruz
8
1979 2016
8
type
5

Similar Publications

On analysis of phthalocyanine network through statistical method.

Sci Rep

December 2024

Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.

Phthalocyanine derivative nanostructures are highly organized organometallic structures that exhibit two-dimensional polymeric phthalocyanine frameworks. We analyze phthalocyanine using the Zagreb-type indices, which offer important insights into the topological characteristics of the molecular structure. Furthermore, we use Pearson correlation analysis to examine the degree of relationship between various structural features and qualities.

View Article and Find Full Text PDF

The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.

View Article and Find Full Text PDF

Machine learning interatomic potentials, as a modern generation of classical force fields, take atomic environments as input and predict the corresponding atomic energies and forces. We challenge the commonly accepted assumption that the contribution of an atom can be learned from the short-range local environment of that atom. We employ density functional theory calculations to quantify the decay of the induced electron density and electrostatic potential in response to local perturbations throughout insulating, semiconducting and metallic samples of different dimensionalities.

View Article and Find Full Text PDF

The search for stable compounds containing an antiaromatic cyclic 4π system is a challenge for inventive chemists that can look back on a long history. Here we report the isolation and characterization of the novel 4π-electron tetrasilacyclobutadiene, an analogue of a 4π neutral cyclobutadiene that exhibits surprising features of a Möbius-type aromatic ring. Reduction of RSiCl (R = (Pr)PCH) with KC in the presence of cycloalkyl amino-carbene (cAAC) led to the formation of corresponding silylene 1.

View Article and Find Full Text PDF

Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!