A recent major earthquake (M7.8), coupled with appropriate climatic conditions, led to significant destruction in Ecuador. Temperature variations, which may be induced by anthropogenic climate change, are often associated with changes in rainfall, humidity and pressure. Temperature and humidity are associated with ecological modifications that may favour mosquito breeding. We hypothesized that the disruptive ecological changes triggered by the earthquake, in the context of appropriate climatic conditions, led to an upsurge in Zika virus (ZIKV) infections. Here we show that, after controlling for climatic and socioeconomic conditions, earthquake severity was associated with incident ZIKV cases. Pre-earthquake mean maximum monthly temperature and post-earthquake mean monthly pressure were negatively associated with ZIKV incidence rates. These results demonstrate the dynamics of post-disaster vector-borne disease transmission, in the context of conducive/favourable climatic conditions, which are relevant in a climate change-affected world where disasters may occur in largely populated areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684400 | PMC |
http://dx.doi.org/10.1038/s41598-017-15706-w | DOI Listing |
An Acad Bras Cienc
January 2025
Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.
The region of the Maritime Antarctic suffers significantly from climate change, resulting in regional warming and consequently affecting coverage. This study characterized three surface zones of Collins Glacier and three other zones in ice-free areas on the Fildes Peninsula, which has an area of 29.6 km².
View Article and Find Full Text PDFSci Adv
January 2025
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
Symmetrical wave ripples identified with NASA's Curiosity rover in ancient lake deposits at Gale crater provide a key paleoclimate constraint for early Mars: At the time of ripple formation, climate conditions must have supported ice-free liquid water on the surface of Mars. These features are the most definitive examples of wave ripples on another planet. The ripples occur in two stratigraphic intervals within the orbitally defined Layered Sulfate Unit: a thin but laterally extensive unit at the base of the Amapari member of the Mirador formation, and a sandstone lens within the Contigo member of the Mirador formation.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Climate and Environmental Physics, University of Bern, 3012 Bern, Switzerland.
To assess the impact of ongoing, historically unprecedented Arctic ice melting, precisely synchronized chronologies are indispensable for past analogs of abrupt climate change. Around 12,900 years before present (B.P.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Facultad de Ciencias Naturales y Exactas, Departamento de Biología y Geografía, Universidad de Oriente, Santiago de Cuba, Cuba.
Climate change is a global environmental threat, directly affecting biodiversity. Terrestrial gastropods are particularly susceptible to alterations in temperature and humidity and have develop morph-physiological and behavioural adaptations in this regard. Shell colour polymorphism and its potential implication for thermoresistance constitute an unexplored field in Neotropical land snails.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!