Utilization of Stainless-steel Furnace Dust as an Admixture for Synthesis of Cement-based Electromagnetic Interference Shielding Composites.

Sci Rep

Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 us 2450, B-3001, Heverlee, Belgium.

Published: November 2017

Electromagnetic interference (EMI) shielding receives attention due to the increasing abundance of electronics. The Cement based material can obtain EMI shielding properties through the use of appropriate "fillers" such as carbon, metal, and ferrite. As the most important by-product of stainless steelmaking operations, through the metal droplets and ferrite that it contains, stainless-steel dust can be considered as a potential filler for EMI shielding applications. We have therefore utilized stainless-steel dust as an admixture for the synthesis of cement-based EMI shielding composites and show that it raises the EMI shielding effectiveness. In particular, a 45 mass pct of stainless-steel dust mixture of 5 mm thickness results in the enhancement of EMI shielding effectiveness to 6-9 dB as tested in the frequency range of 500 MHz-1.5 GHz.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684210PMC
http://dx.doi.org/10.1038/s41598-017-15779-7DOI Listing

Publication Analysis

Top Keywords

emi shielding
24
stainless-steel dust
12
dust admixture
8
admixture synthesis
8
synthesis cement-based
8
electromagnetic interference
8
shielding composites
8
shielding effectiveness
8
shielding
7
emi
6

Similar Publications

A Graphene/MXene-Modified Flexible Fabric for Infrared Camouflage, Electrothermal, and Electromagnetic Interference Shielding.

Nanomaterials (Basel)

January 2025

Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China.

Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed.

View Article and Find Full Text PDF

Lightweight 3D-printed chitosan/MXene aerogels for advanced electromagnetic shielding, energy harvesting, and thermal management.

Carbohydr Polym

March 2025

Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada. Electronic address:

This study focuses on the fabrication of 3D-printed chitosan/TiCT-MXene aerogels with varying MXene concentrations (1, 2, 5, and 10 wt%) using the direct ink writing (DIW) method. The inks were freeze-dried to form aerogels, and FTIR and XRD analyses confirmed interactions between chitosan and MXene molecules, leading to increased spacing between MXene nanosheets. Rheological testing showed improved shear-thinning behavior, enhancing printability.

View Article and Find Full Text PDF

3D-printed sodium alginate/carbon nanotube/graphene porous scaffolds crosslinked with Ca for high-performance electromagnetic shielding and Joule heating.

Carbohydr Polym

March 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China. Electronic address:

High-performance green functional materials have garnered significant interest for electromagnetic interference (EMI) shielding applications, but creating customized, low-density, high-strength and high-efficiency biomass-based shielding materials remains challenging. In this study, lightweight Ca doped sodium alginate (SA) porous scaffolds with a carbon nanotube (CNT)/graphene (Gr) hybrid conductive network were fabricated via direct ink writing (DIW) 3D printing. The SA/CNT/Gr inks with unique rheological properties were formulated and architectures with arbitrarily customized structures could be freely constructed based on the printable inks.

View Article and Find Full Text PDF

Modulating Interface of Ni-Embedded Hollow Porous TiCT MXene Film Toward Efficient EMI Shielding.

Small

January 2025

NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, USA.

Since the explosive growth of state-of-the-art electronics and devices raises concerns about electromagnetic pollution, exploring novel and efficient electromagnetic interference (EMI) shielding materials is desirable and crucial. TiCT MXenes hold significant EMI shielding potential due to their inherent characteristics, including lightweight, metal-like conductivities, unique layered structure, and facile processing. Nonetheless, it remains challenging to fabricate TiCT MXenes-based EMI shielding materials with efficient shielding capability and low reflection.

View Article and Find Full Text PDF

This paper introduces an analytical method for studying power transmission through an infinite array of helical-shaped metal particles in a lossy dielectric medium. While the assessment of composite slabs' transmitted power has been extensively researched in the electromagnetic interference (EMI) shielding field, many studies lack an adequate problem description. The primary inadequacy of these studies is the need for an analytical framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!