Mitochondrial genetics and therapeutic overview of Leber's hereditary optic neuropathy.

Indian J Ophthalmol

Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tami Nadu, India.

Published: November 2017

Leber's hereditary optic neuropathy (LHON) is a common inherited mitochondrial disorder that is characterized by the degeneration of the optic nerves, leading to vision loss. The major mutations in the mitochondrial genes ND1, ND4, and ND6 of LHON subjects are found to increase the oxidative stress experienced by the optic nerve cell, thereby leading to nerve cell damage. Accurate treatments are not available and drugs that are commercially available like Idebenone, EPI-743, and Bendavia with their antioxidant role help in reducing the oxidative stress experienced by the cell thereby preventing the progression of the disease. Genetic counseling plays an effective role in making the family members aware of the inheritance pattern of the disease. Gene therapy is an alternative for curing the disease but is still under study. This review focuses on the role of mitochondrial genes in causing LHON and therapeutics available for treating the disease. A systematic search has been adopted in various databases using the keywords "LHON," "mitochondria," "ND1," "ND4," "ND6," and "therapy" and the following review on mitochondrial genetics and therapeutics of LHON has been developed with obtained articles from 1988 to 2017.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700573PMC
http://dx.doi.org/10.4103/ijo.IJO_358_17DOI Listing

Publication Analysis

Top Keywords

mitochondrial genetics
8
leber's hereditary
8
hereditary optic
8
optic neuropathy
8
mitochondrial genes
8
oxidative stress
8
stress experienced
8
nerve cell
8
mitochondrial
5
genetics therapeutic
4

Similar Publications

Assembly and comparative analysis of the complete mitogenome of var. , an exceptional berry plant possessing sweet leaves.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China.

var. is a special berry plant of in the Rosaceae family. Its leaves contain high-sweetness, low-calorie, and non-toxic sweet ingredients, known as rubusoside.

View Article and Find Full Text PDF

Connections between the mechanical properties of DNA and biological functions have been speculative due to the lack of methods to measure or predict DNA mechanics at scale. Recently, a proxy for DNA mechanics, cyclizability, was measured by loop-seq and enabled genome-scale investigation of DNA mechanics. Here, we use this dataset to build a computational model predicting bias-corrected intrinsic cyclizability, with near-perfect accuracy, solely based on DNA sequence.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) plays a crucial role in numerous cellular processes, yet its impact on human behavior remains underexplored. The current paper proposes a novel covariance structure model with seven parameters to specifically isolate and quantify mtDNA effects on human behavior. This approach uses extended pedigrees to obtain estimates of mtDNA variance while controlling for other genetic and environmental influences.

View Article and Find Full Text PDF

Colorectal cancer (CRC), as one of the malignant tumors with the highest incidence and mortality rates worldwide in recent years, originating primarily from the mucosal tissues of the colon or rectum, and has the potential to rapidly develop into invasive cancer. Its pathogenesis is complex, involving a multitude of factors including genetic background, lifestyle, and dietary habits. Early detection and treatment are key to improving survival rates for patients with CRC.

View Article and Find Full Text PDF

Background: Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants.

Methods: Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!