FDA-approved BRAF inhibitors produce high response rates and improve overall survival in patients with BRAF V600E/K-mutant melanoma, but are linked to pathologies associated with paradoxical ERK1/2 activation in wild-type BRAF cells. To overcome this limitation, a next-generation paradox-breaking RAF inhibitor (PLX8394) has been designed. Here, we show that by using a quantitative reporter assay, PLX8394 rapidly suppressed ERK1/2 reporter activity and growth of mutant BRAF melanoma xenografts. treatment of xenografts and use of a patient-derived explant system (PDeX) revealed that PLX8394 suppressed ERK1/2 signaling and elicited apoptosis more effectively than the FDA-approved BRAF inhibitor, vemurafenib. Furthermore, PLX8394 was efficacious against vemurafenib-resistant BRAF splice variant-expressing tumors and reduced splice variant homodimerization. Importantly, PLX8394 did not induce paradoxical activation of ERK1/2 in wild-type BRAF cell lines or PDeX. Continued dosing of xenografts with PLX8394 led to the development of acquired resistance via ERK1/2 reactivation through heterogeneous mechanisms; however, resistant cells were found to have differential sensitivity to ERK1/2 inhibitor. These findings highlight the efficacy of a paradox-breaking selective BRAF inhibitor and the use of PDeX system to test the efficacy of therapeutic agents. .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752590 | PMC |
http://dx.doi.org/10.1158/1535-7163.MCT-17-0705 | DOI Listing |
Am J Ophthalmol
December 2024
Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Pathol Res Pract
December 2024
Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA. Electronic address:
Pancreatic acinar cell carcinoma (PACC) is a rare pancreatic tumor with a heterogeneous clinical course and, except for radical surgery, limited treatment options. We present a comprehensive study encompassing whole-genome and RNA sequencing of 7 tumor samples from 3 metastatic PACC patients to further delineate its genomic landscape and potential therapeutic implications. Our findings reveal distinct signatures of homologous recombination deficiency (HRD) in patients harboring pathogenic germline BRCA1/2 and FANCL mutations, demonstrating favorable responses to poly (ADP-ribose) polymerase 1 (PARP) inhibitors with prolonged disease-free intervals.
View Article and Find Full Text PDFAm J Pathol
December 2024
Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts. Electronic address:
Cholangiocarcinoma is an aggressive bile duct malignancy with heterogeneous genomic features. Although most patients receive standard-of-care chemotherapy/immunotherapy, genomic changes that can be targeted with established or emerging therapeutics are common. Accordingly, precision medicine strategies are transforming the next-line treatment for patient subsets.
View Article and Find Full Text PDFNeurosurg Rev
December 2024
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.
Although craniopharyngiomas are rare benign brain tumors primarily managed by surgery, they are often burdened by a poor prognosis due to tumor recurrence and long-term morbidity. In recent years, BRAF-targeted therapy has been promising, showing potential as an adjuvant or neoadjuvant approach. Therefore, we aim to develop and validate a radiomics nomogram for preoperative prediction of BRAF mutation in craniopharyngiomas.
View Article and Find Full Text PDFCurr Oncol
December 2024
Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
The incidence of melanoma, the most lethal form of skin cancer, has increased mainly due to ultraviolet exposure. The molecular characterization of melanomas has shown a high mutational burden led to the identification of some recurrent genetic alterations. gene is mutated in 40-50% of melanomas and its role in melanoma development is paramount.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!