Interferon-γ-inducible lysosomal thiol reductase (GILT) plays an important role in the major histocompatibility complex-restricted antigen processing of endocytosed proteins via catalyzing the disulfide bond reduction in the endocytic pathway. Here, the cDNA of Chinese sturgeon (Acipenser sinensis) GILT (CsGILT) was cloned. It contained an open reading frame of 762 nucleotides encoding a protein of 254 amino acids with an estimated molecular weight of 28.1 kDa. The characteristic structural features, including a signature sequence CQHGX2ECX2NX4C, a CXXC motif, two potential N-glycosylation sites, and eight conserved cysteines were detected in the deduced amino acid sequence of CsGILT. CsGILT was widely expressed in Chinese sturgeon with the highest expression in the spleen, and CsGILT mRNA expression was significantly up-regulated when Chinese sturgeons were challenged with polyinosinic polycytidylic acid or Vibrio anguillarum. The recombinant CsGILT displayed obvious thiol reductase activity demonstrated by catalyzing the reduction of mouse IgG(H+L) by dithiothreitol into heavy chain and light chain. CsGILT also displayed significant antioxidant activity in mouse dentritic cells as indicated by its increasing GSH level and GSH/GSSG ratio, decreasing intracellular reactive oxygen species and nitric oxide levels and lipid peroxidation, as well as enhancing the activities of the antioxidative redox enzymes including catalase and superoxide dismutase. Our results suggested an important role for CsGILT in the immune response in Chinese sturgeon to pathogen invasion possibly via a conserved functional mechanism throughout vertebrate evolution, contributing to our understanding the immune biology and protection of Chinese sturgeon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2017.11.014 | DOI Listing |
Int J Biol Macromol
January 2025
National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Starch is widely used in aquaculture because of its low price and the advantages for processing expanded feed. Largemouth bass are naturally type 2 diabetic and intolerant to dietary carbohydrates. In this study, we found that the phosphorylation of AKT and FoxO1 were down-regulated in the fish suffering from metabolic liver disease (MLD).
View Article and Find Full Text PDFBiology (Basel)
December 2024
Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China.
Global warming has led to rising water temperatures, posing a significant threat to fish survival. Understanding the mechanisms by which fish respond to and adapt to temperature variations is thus of considerable importance. This study employed high-throughput 16S rRNA gene sequencing and bioinformatics to investigate changes in the intestinal microbiota of the kaluga sturgeon () under four temperature conditions (19 °C, 25 °C, 28 °C, and 31 °C) and its relationship with adaptation to high-temperature stress.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434024, China. Electronic address:
Single immunoglobulin interleukin-1 receptor-associated protein (SIGIRR) negatively regulates the inflammatory response induced by bacterial infection by inhibiting the excessive synthesis of inflammatory mediators and overactivation. This inhibitory mechanism reduces the fish's susceptibility to pathogens and enhances survival rates. Zebrafish lacking the SIGIRR gene were generated using CRISPR/Cas9 gene knockout technology.
View Article and Find Full Text PDFIntegr Zool
December 2024
Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
The largemouth bronze gudgeon (Coreius guichenoti), an endemic fish species, is distributed in the upper Yangtze River drainage. Due to anthropogenetic factors such as water pollution, overfishing, and dam construction, the wild populations of C. guichenoti have dramatically declined in recent decades.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!