Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.10.045 | DOI Listing |
Eur J Med Chem
January 2018
University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK. Electronic address:
Curr Med Chem
November 2016
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
Expanding antibiotic use in clinical practice and emergence of bacterial resistance are fueling research efforts for the development of novel antibacterials. Underexploited or completely novel mechanistic approaches and biological targets are of especial interest. Undecaprenyl pyrophosphate synthase (UppS) is an essential enzyme in the biosynthesis of the bacterial cell wall.
View Article and Find Full Text PDFChemMedChem
December 2009
Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia.
Bioorg Med Chem
August 2008
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
Aryl diketoacids (ADK) and their bioisosteres are among the most promising HIV-1 integrase (IN) inhibitors. Previously, we designed a series of ADK dimers as a new class of IN inhibitors that were hypothesized to target two divalent metal ions on the active site of IN. Herein we present a further structure-activity relationship (SAR) study with respect to the substituent effect of the ADK and the dimerization with conformationally constrained linkers such as piperazine, 4-amino-piperidine, piperidin-4-ol, and trans-cyclohexan-1,4-diamine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!