Hyperuricemia, a long-term purine metabolic disorder, is a well-known risk factor for gout, hypertension and diabetes. In maintaining normal whole-body purine levels, xanthine oxidase (XOD) is a key enzyme in the purine metabolic pathway, as it catalyzes the oxidation of hypoxanthine to xanthine and finally to uric acid. Here we used the protein-ligand docking software idock to virtually screen potential XOD inhibitors from 3167 approved small compounds/drugs. The inhibitory activities of the ten compounds with the highest scores were tested on XOD in vitro. Interestingly, all the ten compounds inhibited the activity of XOD at certain degrees. Particularly, the anti-ulcerative-colitis drug olsalazine sodium demonstrated a great inhibitory activity for XOD (IC = 3.4 mg/L). Enzymatic kinetic studies revealed that the drug was a hybrid-type inhibitor of xanthine oxidase. Furthermore, the drug strikingly decreased serum urate levels, serum/hepatic activities of XOD at a dose-dependent manner in vivo. Thus, we demonstrated a successful hunting process of compounds/drugs for hyperuricemia through virtual screening, supporting a potential usage of olsalazine sodium in the treatment of hyperuricemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphs.2017.10.007 | DOI Listing |
Metabolites
December 2024
Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.
View Article and Find Full Text PDFPharmaceutics
August 2024
Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si 28119, Republic of Korea.
Cureus
May 2024
Internal Medicine, University of North Carolina Hospitals, Chapel Hill, USA.
Environ Res
September 2024
International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China. Electronic address:
Polycystic kidney disease is the most prevalent hereditary kidney disease globally and is mainly linked to the overexpression of a gene called PKD1. To date, there is no effective treatment available for polycystic kidney disease, and the practicing treatments only provide symptomatic relief. Discovery of the compounds targeting the PKD1 gene by inhibiting its expression under the disease condition could be crucial for effective drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!