The development of efficient bioremediation techniques to reduce aquatic pollutant load in natural sediment is one of the current challenges in ecological engineering. A nature-based solution for metal bioremediation is proposed through a combination of bioturbation and phytoremediation processes in experimental indoor microcosms. The invertebrates Tubifex tubifex (Oligochaeta Tubificidae) was used as an active ecological engineer for bioturbation enhancement. The riparian plant species Typha latifolia was selected for its efficiency in phyto-accumulating pollutants from sediment. Phytoremediation efficiency was estimated by using cadmium as a conservative pollutant known to bio-accumulate in plants, and initially introduced in the overlying water (20μg Cd/L of cadmium nitrate - Cd(NO)·4HO). Biological sediment reworking by invertebrates' activity was quantified using luminophores (inert particulates). Our results showed that bioturbation caused by tubificid worms' activity followed the bio-conveying transport model with a downward vertical velocity (V) of luminophores ranging from 16.7±4.5 to 18.5±3.9cm·year. The biotransport changed the granulometric properties of the surface sediments, and this natural process was still efficient under cadmium contamination. The highest value of Cd enrichment coefficient for plant roots was observed in subsurface sediment layer (below 1cm to 5cm depth) with tubificids addition. We demonstrated that biotransport changed the distribution of cadmium across the sediment column as well as it enhanced the pumping of this metal from the surface to the anoxic sediment layers, thereby increasing the bioaccumulation of cadmium in the root system of Typha latifolia. This therefore highlights the potential of bioturbation as a tool to be considered in future as integrated bioremediation strategies of metallic polluted sediment in aquatic ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.09.237 | DOI Listing |
Cattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Environmental Science, Policy and Management, University of California at Berkeley, USA.
Wetland macrophytes play a critical role in the performance of treatment wetlands (TWs), primarily through nutrient uptake. However, this retention is temporary, as nutrients are released back into the water upon the decomposition of plant litter. The removal of stored nutrients from TWs can be efficiently achieved by harvesting plants during the peak of the growing season, albeit with significant ecological disturbance.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran.
This study presents a novel, eco-friendly method for removing methyldiethanolamine (MDEA) from wastewater, addressing its environmental impact and elevated chemical oxygen demand (COD) from gas refineries. We employed two wetland plants, Phragmites australis and Typha latifolia, utilizing a hydroponics approach to assess MDEA removal efficiency. Wastewater samples from the Ilam gas refinery in Iran were tested at varying initial concentrations (50 to 1600 ppm) over three consecutive 7-day periods, with a 1-day rest interval.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Department of Ecology, Jinan University, Guangzhou, China.
Vegetated ditches have been demonstrated to be an effective method for pollutant remediation. This study assesses the removal potential and pathways for herbicide runoff pollution utilizing , , , and ditches. Resultes show these vegetated ditches significantly outperform unvegetated ones in removing atrazine and diuron during runoff events ( < 0.
View Article and Find Full Text PDFHeliyon
December 2024
College of Science, Department of Biology, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia.
Natural wetlands and paddy fields support a rich diversity of life forms. The study objective includes assessing the macrophyte community in relation to environmental variables and providing information on floristic compositions. The research is significant for determining the extent of disturbance and potential remedies from the standpoint of the health of the wetland ecosystem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!