Theoretically proposed optimal frequency for ultrasound induced cartilage restoration.

Theor Biol Med Model

Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 207 Othmer Hall, Lincoln, NE, 68588, USA.

Published: November 2017

Background: Matching the frequency of the driving force to that of the system's natural frequency of vibration results in greater amplitude response. Thus we hypothesize that applying ultrasound at the chondrocyte's resonant frequency will result in greater deformation than applying similar ultrasound power at a frequency outside of the resonant bandwidth. Based on this resonant hypothesis, our group previously confirmed theoretically and experimentally that ultrasound stimulation of suspended chondrocytes at resonance (5 MHz) maximized gene expression of load inducible genes. However, this study was based on suspended chondrocytes. The resonant frequency of a chondrocyte does not only depend on the cell mass and intracellular stiffness, but also on the mechanical properties of the surrounding medium. An in vivo chondrocyte's environment differs whether it be a blood clot (following microfracture), a hydrogel or the pericellular and extracellular matrices of the natural cartilage. All have distinct structures and compositions leading to different resonant frequencies. In this study, we present two theoretical models, the first model to understand the effects of the resonant frequency on the cellular deformation and the second to identify the optimal frequency range for clinical applications of ultrasound to enhance cartilage restoration.

Results: We showed that applying low-intensity ultrasound at the resonant frequency induced deformation equivalent to that experimentally calculated in previous studies at higher intensities and a 1 MHz frequency. Additionally, the resonant frequency of an in vivo chondrocyte in healthy conditions, osteoarthritic conditions, embedded in a blood clot and embedded in fibrin ranges from 3.5 - 4.8 MHz.

Conclusion: The main finding of this study is the theoretically proposed optimal frequency for clinical applications of therapeutic ultrasound induced cartilage restoration is 3.5 - 4.8 MHz (the resonant frequencies of in vivo chondrocytes). Application of ultrasound in this frequency range will maximize desired bioeffects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684760PMC
http://dx.doi.org/10.1186/s12976-017-0067-4DOI Listing

Publication Analysis

Top Keywords

resonant frequency
20
frequency
13
optimal frequency
12
resonant
9
theoretically proposed
8
proposed optimal
8
ultrasound
8
ultrasound induced
8
induced cartilage
8
cartilage restoration
8

Similar Publications

Identifying the prolactin threshold that necessitates pituitary magnetic resonance imaging (MRI) in patients with hyperprolactinemia remains challenging. Therefore, developing standards for serum prolactin level criteria to predict prolactinoma is critical. This study aimed to investigate the correlation between hyperprolactinemia and the presence of pituitary adenoma among Saudi female patients with verified prolactin levels.

View Article and Find Full Text PDF

Objective: To evaluate the postoperative complications and prognosis of renal cell carcinoma (RCC) in a solitary kidney after irreversible electroporation (IRE).

Materials And Methods: A total of 8 patients with 9 RCCs in a solitary kidney treated with computed tomography (CT)-guided IRE from February 2017 to September 2020 were retrospectively analyzed. Follow-up included contrast-enhanced CT or magnetic resonance imaging examinations at 1 day, 1 week, 1 month, 3 months, 6 months, 12 months, and each year after IRE and the evaluation of the incidence of postoperative complications, renal function changes, local tumor recurrence, and metastasis.

View Article and Find Full Text PDF

Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label's excited-state lifetime due to the decay of 2D IR absorption bands.

View Article and Find Full Text PDF

Background: Intrathecal (IT) chemotherapy is essential in treating hematological malignancies, but it can lead to ascending paraplegia, a condition that currently lacks clear management guidelines.

Methods: We conducted a systematic review, analyzing 1219 studies and 116 patients, adhering to PRISMA guidelines for individual patient data. The study, registered under PROSPERO (CRD42022362121), focused on the onset, diagnostic approaches, and therapeutic interventions associated with this complication, and management strategies to tackle the ascending paraplegia.

View Article and Find Full Text PDF

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!