A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atomic-scale investigation of physical adsorption of water molecules and aggressive ions to ettringite's surfaces. | LitMetric

Atomic-scale investigation of physical adsorption of water molecules and aggressive ions to ettringite's surfaces.

J Colloid Interface Sci

Department of Civil, Construction and Environmental Engineering, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-1066, United States. Electronic address:

Published: March 2018

The strength and durability of cementitious composite materials are adversely affected by the ingress of water molecules and aggressive ions into their intrinsic meso- and nano-pore spaces. Among various phases of hydrated cement paste (HCP), aluminum-rich phases play an important role in controlling the diffusivity of aqueous solutions, which can contain aggressive ions. To this date, however, there has been no systematic study to understand the adsorption mechanisms and chloride binding capacity of the aluminum-rich phases of HCP. This research gap has been the motivation of the current study to investigate the physical adsorption characteristics of ettringite as the main aluminum-rich phase of HCP and the primary hydrated product of calcium sulfoaluminate cement. Through a set of Molecular Dynamics simulations supported by macro-scale experimental tests, a fundamental insight into the molecular origins of the diffusion of water molecules, as well as sodium and chloride ions, in contact with ettringite is provided. As the primary objective of this study is to evaluate the transport properties at and near solution/solid interfaces, the molecular adsorption mechanisms are characterized for inner- and outer-sphere distances from the solid substrate. With an in-depth understanding of the structure and dynamics of water molecules and aggressive ions in contact with ettringite's surfaces, the outcome of this study provides reliable measures of physical adsorption, binding capacity, and self-diffusion coefficient, which can be further employed to introduce strategies to avoid the degradation of a wide variety of cementitious materials exposed to harsh environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.09.019DOI Listing

Publication Analysis

Top Keywords

water molecules
16
aggressive ions
16
physical adsorption
12
molecules aggressive
12
ettringite's surfaces
8
aluminum-rich phases
8
adsorption mechanisms
8
binding capacity
8
ions contact
8
adsorption
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!