Frameworks such as BioNetGen, Kappa and Simmune use "reaction rules" to specify biochemical interactions compactly, where each rule specifies a mechanism such as binding or phosphorylation and its structural requirements. Current rule-based models of signaling pathways have tens to hundreds of rules, and these numbers are expected to increase as more molecule types and pathways are added. Visual representations are critical for conveying rule-based models, but current approaches to show rules and interactions between rules scale poorly with model size. Also, inferring design motifs that emerge from biochemical interactions is an open problem, so current approaches to visualize model architecture rely on manual interpretation of the model. Here, we present three new visualization tools that constitute an automated visualization framework for rule-based models: (i) a compact rule visualization that efficiently displays each rule, (ii) the atom-rule graph that conveys regulatory interactions in the model as a bipartite network, and (iii) a tunable compression pipeline that incorporates expert knowledge and produces compact diagrams of model architecture when applied to the atom-rule graph. The compressed graphs convey network motifs and architectural features useful for understanding both small and large rule-based models, as we show by application to specific examples. Our tools also produce more readable diagrams than current approaches, as we show by comparing visualizations of 27 published models using standard graph metrics. We provide an implementation in the open source and freely available BioNetGen framework, but the underlying methods are general and can be applied to rule-based models from the Kappa and Simmune frameworks also. We expect that these tools will promote communication and analysis of rule-based models and their eventual integration into comprehensive whole-cell models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703574 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1005857 | DOI Listing |
Sci Prog
January 2025
School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, China.
The main challenge facing current energy management strategies for extended-range electric vehicles is effectively balancing power demand and energy utilization to enhance fuel economy under complex and variable driving conditions. Therefore, to optimize the distribution between the two energy sources of extended-range electric vehicles and improve their fuel economy, this paper proposes an energy management strategy incorporating speed prediction. Firstly, the long short-term memory neural network speed prediction scheme is investigated, and its effectiveness under different cyclic conditions is verified.
View Article and Find Full Text PDFPrenat Diagn
January 2025
Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia.
Objective: The first objective is to develop a nuchal thickness reference chart. The second objective is to compare rule-based algorithms and machine learning models in predicting small-for-gestational-age infants.
Method: This retrospective study involved singleton pregnancies at University Malaya Medical Centre, Malaysia, developed a nuchal thickness chart and evaluated its predictive value for small-for-gestational-age using Malaysian and Singapore cohorts.
Int J Technol Assess Health Care
January 2025
Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA.
Objectives: Advances in mobile apps, remote sensing, and big data have enabled remote monitoring of mental health conditions, but the cost-effectiveness is unknown. This study proposed a systematic framework integrating computational tools and decision-analytic modeling to assess cost-effectiveness and guide emerging monitoring technologies development.
Methods: Using a novel decision-analytic Markov-cohort model, we simulated chronic depression patients' disease progression over 2 years, allowing treatment modifications at follow-up visits.
BMC Med Res Methodol
January 2025
School of Management, Beijing University of Chinese Medicine, Beijing, China.
Purpose: The process of searching for and selecting clinical evidence for systematic reviews (SRs) or clinical guidelines is essential for researchers in Traditional Chinese medicine (TCM). However, this process is often time-consuming and resource-intensive. In this study, we introduce a novel precision-preferred comprehensive information extraction and selection procedure to enhance both the efficiency and accuracy of evidence selection for TCM practitioners.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
Background Large-scale secondary use of clinical databases requires automated tools for retrospective extraction of structured content from free-text radiology reports. Purpose To share data and insights on the application of privacy-preserving open-weights large language models (LLMs) for reporting content extraction with comparison to standard rule-based systems and the closed-weights LLMs from OpenAI. Materials and Methods In this retrospective exploratory study conducted between May 2024 and September 2024, zero-shot prompting of 17 open-weights LLMs was preformed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!