Deep Learning: A Primer for Radiologists.

Radiographics

From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.).

Published: April 2018

Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data. With the advent of large datasets and increased computing power, these methods can produce models with exceptional performance. These models are multilayer artificial neural networks, loosely inspired by biologic neural systems. Weighted connections between nodes (neurons) in the network are iteratively adjusted based on example pairs of inputs and target outputs by back-propagating a corrective error signal through the network. For computer vision tasks, convolutional neural networks (CNNs) have proven to be effective. Recently, several clinical applications of CNNs have been proposed and studied in radiology for classification, detection, and segmentation tasks. This article reviews the key concepts of deep learning for clinical radiologists, discusses technical requirements, describes emerging applications in clinical radiology, and outlines limitations and future directions in this field. Radiologists should become familiar with the principles and potential applications of deep learning in medical imaging. RSNA, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.2017170077DOI Listing

Publication Analysis

Top Keywords

deep learning
24
learning methods
16
machine learning
8
computer vision
8
methods produce
8
neural networks
8
learning
7
deep
6
methods
5
learning primer
4

Similar Publications

Background: Unplanned readmission, a measure of surgical quality, occurs after 4.8% of primary total knee arthroplasties (TKA). Although the prediction of individualized readmission risk may inform appropriate preoperative interventions, current predictive models, such as the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) surgical risk calculator (SRC), have limited utility.

View Article and Find Full Text PDF

Background: Early Childhood Education and Care (ECEC) centers play an important role in fostering healthy dietary habits. The Nutrition Now project focusing on improving dietary habits during the first 1000 days of life. Central to the project is the implementation of an e-learning resource aimed at promoting feeding practices among staff and healthy dietary behaviours for children aged 0-3 years in ECEC.

View Article and Find Full Text PDF

Background And Purpose: The purpose of reflection in the learning process is to create meaningful and deep learning. Considering the importance of emphasizing active and student-centered methods in learning and the necessity of learners' participation in the education process, the present study was conducted to investigate the effect of flipped classroom teaching method on the amount of reflection ability in nursing students and the course of professional ethics.

Study Method: The current study is a quasi-experimental study using Solomon's four-group method.

View Article and Find Full Text PDF

Optimizing hip MRI: enhancing image quality and elevating inter-observer consistency using deep learning-powered reconstruction.

BMC Med Imaging

January 2025

Department of Magnetic Resonance Imaging, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.

Background: Conventional hip joint MRI scans necessitate lengthy scan durations, posing challenges for patient comfort and clinical efficiency. Previously, accelerated imaging techniques were constrained by a trade-off between noise and resolution. Leveraging deep learning-based reconstruction (DLR) holds the potential to mitigate scan time without compromising image quality.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are pivotal in the initiation and progression of complex human diseases and have been identified as targets for small molecule (SM) drugs. However, the expensive and time-intensive characteristics of conventional experimental techniques for identifying SM-miRNA associations highlight the necessity for efficient computational methodologies in this field.

Results: In this study, we proposed a deep learning method called Multi-source Data Fusion and Graph Neural Networks for Small Molecule-MiRNA Association (MDFGNN-SMMA) to predict potential SM-miRNA associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!