Metabolism and Photolysis of 2,4-Dinitroanisole in Arabidopsis.

Environ Sci Technol

Civil & Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States.

Published: December 2017

New insensitive munitions explosives, including 2,4-dinitroanisole (DNAN), are replacing traditional explosive compounds to protect soldiers and simplify transport logistics. Despite the occupational safety benefits of these new explosives, feasible strategies for cleaning up DNAN from soil and water have not been developed. Here, we evaluate the metabolism of DNAN by the model plant Arabidopsis to determine whether phytoremediation can be used to clean up contaminated sites. Furthermore, we evaluate the role of photodegradation of DNAN and its plant metabolites within Arabidopsis leaves to determine the potential impact of photolysis on the phytoremediation of contaminants. When exposed to DNAN for three days, Arabidopsis took up and metabolized 67% of the DNAN in hydroponic solution. We used high resolution and tandem mass spectrometry in combination with stable-isotope labeled DNAN to confirm ten phase II DNAN metabolites in Arabidopsis. The plants separately reduced both the para- and ortho-nitro groups and produced glycosylated products that accumulated within plant tissues. Both DNAN and a glycosylated metabolite were subsequently photolyzed within leaf tissue under simulated sunlight, and [N]DNAN yielded NO in leaves. Therefore, photolysis inside leaves may be an important, yet under-explored, phytoremediation mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5839145PMC
http://dx.doi.org/10.1021/acs.est.7b04220DOI Listing

Publication Analysis

Top Keywords

dnan
9
metabolites arabidopsis
8
arabidopsis
5
metabolism photolysis
4
photolysis 24-dinitroanisole
4
24-dinitroanisole arabidopsis
4
arabidopsis insensitive
4
insensitive munitions
4
munitions explosives
4
explosives including
4

Similar Publications

Laboratory testing with adjustable loading amplitudes and durations remains the primary method for assessment of the safety of explosives under either launch or penetration environment. In this study, a novel impact testing laboratory equipment with loading amplitudes ranging from 0.1 to 1.

View Article and Find Full Text PDF

Munition constituents (MC) in stormwater runoff have the potential to move these pollutants into receiving bodies at military installations. Here we present further evaluation of a passive and sustainable biofilter technology for removal of dissolved MC from simulated surface runoff by combined sorption-biodegradation processes under dynamic flow conditions. Columns were packed with MC sorbents Sphagnum peat moss and cationized (CAT) pine shavings with and without wood-based biochar.

View Article and Find Full Text PDF

New weapons explosive exhibits persistent toxicity in plants.

Nat Plants

November 2024

Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK.

Explosives are widespread, toxic and persistent environmental pollutants. 2,4-Dinitroanisole (DNAN) is being phased in to replace 2,4,6-trinitrotoluene (TNT) in munitions. Here we demonstrate that only low levels of DNAN are detoxified in Arabidopsis, leaving it to remain as a substrate for monodehydroascorbate reductase 6 mediated chronic phytotoxicity.

View Article and Find Full Text PDF

Use of qPCR to monitor 2,4-dinitroanisole degrading bacteria in water and soil slurry cultures.

J Ind Microbiol Biotechnol

January 2024

Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA.

Unlabelled: Prediction and process monitoring during natural attenuation, bioremediation, and biotreatment require effective strategies for detection and enumeration of the responsible bacteria. The use of 2,4-dinitroanisole (DNAN) as a component of insensitive munitions leads to environmental contamination of firing ranges and manufacturing waste streams. Nocardioides sp.

View Article and Find Full Text PDF

Residue of energetic formulations, which is deposited on military training grounds following incomplete detonation, poses biotic hazards. This residue can be transported off-site, adsorb to soil clays and organic matter, transform or degrade, or taken up by plants and animals. Its harmful effects can be mitigated by localizing the energetics at the site of initial deposition using soil amendments and allowing them to bio- and photodegrade in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!