The High Throughput (HT) investigation of chromatographic separations is an important element of downstream bioprocess development due to the importance of chromatography as a technique for achieving stringent regulatory requirements on product purity. Various HT formats for chromatography exist, but the miniature column approach has characteristics resembling large scale packed bed column chromatography the most. The operation of such columns on robotic stations can be automated, but this is not always a straightforward procedure; the robotic manipulations are highly dependent on the settings of each experiment and the standard commands of the supporting software may not provide readily the required flexibility and accessibility for "plug and play" functionality. These can limit the potential of this technique in laboratories engaging on HT activities. In this work, we present an application which aims to overcome this challenge by providing end-users with a flexible operation of the miniature column technique on an automated liquid handler. The application includes a script which is written on Freedom EVOware, and is supplemented by custom compiled executables. Here, the manipulations carried out by the application are described in detail and its functionality is demonstrated through typical experiments based on bind and elute miniature column chromatography. The application is shown to allow for the unsupervised "on-the-fly" programming of the robotic station and to ultimately make the technique accessible to non-automation experts. This application is therefore well suited to simplifying development activities based on the robotic deployment of the miniature column chromatography technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.201700390 | DOI Listing |
Int J Mol Sci
December 2024
Department of Chemistry, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia.
In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ polymerization of 9-anthracenylmethyl methacrylate (ANM) and trimethylolpropane trimethacrylate (TRIM) in a fused silica capillary column of 100 µm ID. Polymerization solution was optimized in relation to monomer and porogenic solvent.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), UMR CNRS-ESPCI Paris 8231, ESPCI Paris, PSL University, CNRS, Paris, France.
Adduction on protein nucleophile sites by mustard agents can be monitored to assess detection of retrospective exposure to these agents. Cysteine 34 (Cys34) on human serum albumin was selected as the target of choice. This work targets di- and tripeptides adducted on Cys34 by sulfur mustard, sesquimustard, and nitrogen mustards separated in hydrophilic liquid chromatography (HILIC) and Reversed-Phase (RP) mode.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
School of Pharmacy, Jiangsu University, Zhenjiang 212013, China. Electronic address:
In order to enrich the selection of biological ligands, realize the miniaturization analysis, and broaden the application of monolith materials for active ingredients screening and separating, we sough to construct a lipid raft @capillary monolith microcolumn affinity chromatography model. Single factor experiments and various characterization methods, including scanning electron microscopy (SEM) and thermogravimetric analysis, were employed to investigate the polymerization of the monolith column under different material ratios to determine optimal preparation conditions. Subsequently, the lipid raft from U251 cells was integrated with the monolith materials based on epoxy-based covalent crosslinking principle and characterized through SEM and immunofluorescence methods.
View Article and Find Full Text PDFMolecules
November 2024
Universite Claude Bernard Lyon 1, ISA, UMR 5280, CNRS, 5 Rue de la Doua, 69100 Villeurbanne, France.
The study of biomolecules and their interactions in their natural environment requires increasingly sophisticated technological and methodological developments. The complexity of these developments is due, among other things, to the nature of these molecules and the small quantities available depending on their origin. In this context, this study focuses on the conditions for improving the detection of glycosaminoglycans on a miniaturized scale by mass spectrometry.
View Article and Find Full Text PDFAnal Chem
November 2024
Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 2370061, Japan.
We developed a new method for stable carbon and nitrogen isotopic (δC and δN) analysis of underivatized amino acid (AA) enantiomers simultaneously, based on high-performance liquid chromatography (HPLC) separation and off-line isotopic measurement. l- and d-Enantiomers of each AA were isolated using a ReproSil Chiral-AA column, purified by wet chemical procedure, and analyzed for δC and δN values with a nanomol-scale elemental analyzer/isotope-ratio mass spectrometry (nano-EA/IRMS) system. We successfully achieved the separation of l- and d-enantiomers of 15 proteinogenous AAs, with all l-enantiomers eluting before respective d-enantiomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!