Background/aims: The aim of this study was to determine the anti-psoriasis effects of α-(8-quinolinoxy) zinc phthalocyanine (ZnPc-F7)-mediated photodynamic therapy (PDT) and to reveal its mechanisms.
Methods: HaCaT cells were used to observe the influence of ZnPc-F7-PDT on cell proliferation in vitro. The in vivo anti-psoriasis effects of ZnPc-F7-PDT were evaluated using a mouse vagina model, a propranolol-induced cavy psoriasis model and an imiquimod (IMQ)-induced nude mouse psoriasis model. Flow cytometry was carried out to determine T lymphocyte levels. Western blotting was performed to determine protein expression, and a reverse transcription-polymerase chain reaction test was performed to determine mRNA expression.
Results: The results showed that ZnPc-F7-PDT significantly inhibited the proliferation of HaCaT cells in vitro; when the light doses were fixed, changing the irradiation time or output power had little influence on the inhibition rate. ZnPc-F7-PDT significantly inhibited the hyperproliferation of mouse vaginal epithelium induced by diethylstilbestrol and improved propranolol- and IMQ-induced psoriasis-like symptoms. ZnPc-F7-PDT inhibited IMQ-induced splenomegaly and T lymphocyte abnormalities. ZnPc-F7-PDT did not appear to change T lymphocytes in the mouse vagina model. ZnPc-F7-PDT down-regulated the expression of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-2 (Bcl-2), interleukin (IL)-17A mRNA and IL-17F mRNA, and up-regulated the expression of Bax.
Conclusion: In conclusion, ZnPc-F7-PDT exhibited therapeutic effects in psoriasis both in vitro and in vivo and is a potential approach in the treatment of psoriasis. Potential mechanisms of these effects included the inhibition of hyperproliferation; regulation of PCNA, Bcl-2, Bax, IL-17A mRNA and IL-17F mRNA expression; and immune regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000484647 | DOI Listing |
Int J Biol Macromol
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:
Psoriasis is a chronic and incurable inflammatory skin disease usually requiring long-term disease management. Natural phytochemical resveratrol (RES) has been known for high efficiency and low toxicity, exhibiting good anti-psoriasis potential. However, its biological activity is limited by poor solubility, chemical instability, and insufficient skin retention.
View Article and Find Full Text PDFAssay Drug Dev Technol
January 2025
University Institute of Pharmacy, Pandit Ravishankar Shukla University, Raipur, India.
Int J Pharm
January 2025
School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China. Electronic address:
Psoriasis seriously affects the physical and mental health of patients. Rocaglamide (RocA), derived from Aglaia odorata, exhibits potent pharmacological activities. Although its efficacy in psoriasis is unclear, RocA could be a promising therapeutic drug.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine,100 Shizi Road, Nanjing, Jiangsu 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu 210028, China. Electronic address:
Psoriasis is difficult to treat clinically and lacks an effective treatment. Low-molecular-weight heparin sodium (LMH) is an animal glycosaminoglycan with anti-inflammatory properties. Transdermal and intradermal retention studies have suggested that LMH sodium can reach the dermis.
View Article and Find Full Text PDFEur J Pharm Sci
February 2025
College of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Putian 351100, Fujian, China.
Blue light will be a promising alternative for photodynamic therapy in psoriasis, but the photosensitizer in vivo remains unexplored. Mesoporous zinc phosphate microparticle (MZP) was synthesized successfully in this study, as evidenced by XPS, XRD, and nitrogen adsorption experiments. Its psoriatic skin-sensitive property was corroborated by SEM and the higher cumulative release rate of that impregnated with curcumin (Cur) and glycyrrhizic acid (GA), namely Cur-GA-MZP, at pH 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!