Vesicular drug delivery systems have gained wide attention in the field of nanotechnology. Among them proniosomes become the superior over other vesicular carriers. Proniosomes are dry formulations of water soluble nonionic surfactant coated carrier system which immediately forms niosomes upon hydration. They have the capability to overcome the instability problems associated with niosomes and liposomes and have the potential to improve solubility, bioavailability, and absorption of various drugs. Furthermore, they offer versatile drug delivery concept for enormous number of hydrophilic and hydrophobic drugs. They have the potential to deliver drugs effectively through different routes at specific site of action to achieve controlled release action and reduce toxic effects associated with drugs. This review discusses the general preparation techniques of proniosomes and mainly focus on the applications of proniosomes in drug delivery and targeting. Moreover, this review demonstrates critical appraisal of the literature for proniosomes. Additionally, this review extensively explains the potential of proniosomes in delivering drugs via different routes, such as oral, parenteral, dermal and transdermal, ocular, oral mucosal, vaginal, pulmonary, and intranasal. Finally, the comparison of proniosomes with niosomes manifests the clear distinction between them. Moreover, proniosomes need to be explored for proteins and peptide delivery and in the field of nutraceuticals and develop pilot plant scale up studies to investigate them in industrial set up.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812579 | PMC |
http://dx.doi.org/10.1080/10717544.2017.1384520 | DOI Listing |
ACS Appl Bio Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.
Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Visual Informatics, The National University of Malaysia (UKM), Bangi, Malaysia.
Patients with type 1 diabetes and their physicians have long desired a fully closed-loop artificial pancreas (AP) system that can alleviate the burden of blood glucose regulation. Although deep reinforcement learning (DRL) methods theoretically enable adaptive insulin dosing control, they face numerous challenges, including safety and training efficiency, which have hindered their clinical application. This paper proposes a safe and efficient adaptive insulin delivery controller based on DRL.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.
View Article and Find Full Text PDFArch Microbiol
January 2025
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!