During magnetic resonance imaging (MRI) examinations, the average specific absorption rate (SAR) of the whole body is calculated as an index of global energy deposition in biological tissue without taking into account the presence of metallic implants or conductive materials. However, this global SAR calculation is not sufficient to ensure patient safety and a local SAR measurement should be carried out. Several measurement techniques have already been used to evaluate the local SAR, in particular electric field (E-field) probes, but the accuracy of the measurements and the resolutions (spatial and temporal) depend strongly on the measurement method/probe. This work presents an MR-compatible, subcentimeter probe based on an electro-optic (EO) principle enabling a real-time measurement of the local E-field during MRI scans. The experiments using these probes were performed on two different MR systems (preclinical and clinical) having different static magnetic field strengths and with different volume coil geometries. The E-field was measured with unloaded (in air) and loaded volume coils in order to assess the sensing characteristics of the optical probe. The results show an excellent linearity between the measured E-field and the radiofrequency (RF) magnetic field in both experimental conditions. Moreover, the distribution of the E-field throughout the volume coil was experimentally determined and was in good agreement with numerical simulations. Finally, we demonstrate through our measurements that the E-field depends strongly on the dielectric properties of the medium.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.3849DOI Listing

Publication Analysis

Top Keywords

electric field
8
local sar
8
magnetic field
8
volume coil
8
e-field
6
electro-optic probe
4
probe real-time
4
real-time assessments
4
assessments electric
4
field
4

Similar Publications

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.

View Article and Find Full Text PDF

Internal Nanocavity Regulation of Embedded Rare Earth Up-Conversion Nanoparticles for HO Production Operable at Up to 780 nm.

Small

January 2025

XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.

View Article and Find Full Text PDF

A Versatile Dual-Responsive Shape-Memory Gripper via Additive Manufacturing Toward High-Performance Cross-Scale Objects Maneuvering.

Small

January 2025

Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.

Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) is an effective treatment for severe depression, especially in treatment-resistant cases. However, its potential cognitive side effects necessitate careful dosing to balance therapeutic benefits and cognitive stability. Recent advances in electric field (E-field) modeling offer promising avenues to optimize ECT dosing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!