Hyperpolarized C magnetic resonance imaging (MRI) may be used to non-invasively image the transport and chemical conversion of C-labeled compounds in vivo. In this study, we utilize hyperpolarized C MRI to evaluate metabolic markers in the kidneys longitudinally in a mouse model of partial unilateral ureteral obstruction (pUUO). Partial obstruction was surgically induced in the left ureter of nine adult mice, leaving the right ureter as a control. H and hyperpolarized [1- C]pyruvate MRI of the kidneys was performed 2 days prior to surgery (baseline) and at 3, 7 and 14 days post-surgery. Images were evaluated for changes in renal pelvis volume, pyruvate, lactate and the lactate to pyruvate ratio. After 14 days, mice were sacrificed and immunohistological staining of both kidneys for collagen fibrosis (picrosirius red) and macrophage infiltration (F4/80) was performed. Statistical analysis was performed using a linear mixed effects model. Significant kidney × time interaction effects were observed for both lactate and pyruvate, indicating that these markers changed differently between time points for the obstructed and unobstructed kidneys. Both kidneys showed an increase in the lactate to pyruvate ratio after obstruction, suggesting a shift towards glycolytic metabolism. These changes were accompanied by marked hydronephrosis, fibrosis and macrophage infiltration in the obstructed kidney, but not in the unobstructed kidney. Our results show that pUUO is associated with increased pyruvate to lactate metabolism in both kidneys, with injury and inflammation specific to the obstructed kidney. The work also demonstrates the feasibility of the use of hyperpolarized C MRI to study metabolism in renal disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736002PMC
http://dx.doi.org/10.1002/nbm.3846DOI Listing

Publication Analysis

Top Keywords

hyperpolarized mri
12
lactate pyruvate
12
ureteral obstruction
8
pyruvate lactate
8
pyruvate ratio
8
macrophage infiltration
8
obstructed kidney
8
kidneys
6
hyperpolarized
5
mri
5

Similar Publications

Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.

View Article and Find Full Text PDF

Spatially constrained hyperpolarized 13C MRI pharmacokinetic rate constant map estimation using a digital brain phantom and a U-Net.

J Magn Reson

January 2025

UC Berkeley - UCSF Graduate Program in Bioengineering, 1700 4th St, San Francisco, CA 94158, USA; Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th St, San Francisco, CA 94158, USA.

Fitting rate constants to Hyperpolarized [1-C]Pyruvate (HP C13) MRI data is a promising approach for quantifying metabolism in vivo. Current methods typically fit each voxel of the dataset using a least-squares objective. With these methods, each voxel is considered independently, and the spatial relationships are not considered during fitting.

View Article and Find Full Text PDF

Tailoring rhodium-based metal-organic layers for parahydrogen-induced polarization: achieving 20% polarization of H in liquid phase.

Natl Sci Rev

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.

View Article and Find Full Text PDF

The achievable spatial resolution of C metabolic images acquired with hyperpolarized C-pyruvate is worse than H images typically by an order of magnitude due to the rapidly decaying hyperpolarized signals and the low gyromagnetic ratio of C. This study is to develop and characterize a volumetric patch-based super-resolution reconstruction algorithm that enhances spatial resolution C cardiac MRI by utilizing structural information from H MRI. The reconstruction procedure comprises anatomical segmentation from high-resolution H MRI, calculation of a patch-based weight matrix, and iterative reconstruction of high-resolution multi-slice C MRI.

View Article and Find Full Text PDF

Assessing Lung Ventilation and Bronchodilator Response in Asthma and Chronic Obstructive Pulmonary Disease with F MRI.

Radiology

December 2024

From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.).

Background Pulmonary function tests are central to diagnosis and monitoring of respiratory diseases but do not provide information on regional lung function heterogeneity. Fluorine 19 (F) MRI of inhaled perfluoropropane permits quantitative and spatially localized assessment of pulmonary ventilation properties without tracer gas hyperpolarization. Purpose To assess regional lung ventilation properties using F MRI of inhaled perfluoropropane in participants with asthma, participants with chronic obstructive pulmonary disease (COPD), and healthy participants, including quantitative evaluation of bronchodilator response in participants with respiratory disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!