Repeatedly pairing vagus nerve stimulation (VNS) with a tone or movement drives highly specific and long-lasting plasticity in auditory or motor cortex, respectively. Based on this robust enhancement of plasticity, VNS paired with rehabilitative training has emerged as a potential therapy to improve recovery, even when delivered long after the neurological insult. Development of VNS delivery paradigms that reduce therapy duration and maximize efficacy would facilitate clinical translation. The goal of the current study was to determine whether primary auditory cortex (A1) plasticity can be generated more quickly by shortening the interval between VNS-tone pairing events or by delivering fewer VNS-tone pairing events. While shortening the inter-stimulus interval between VNS-tone pairing events resulted in significant A1 plasticity, reducing the number of VNS-tone pairing events failed to alter A1 responses. Additionally, shortening the inter-stimulus interval between VNS-tone pairing events failed to normalize neural and behavioral responses following acoustic trauma. Extending the interval between VNS-tone pairing events yielded comparable A1 frequency map plasticity to the standard protocol, but did so without increasing neural excitability. These results indicate that the duration of the VNS-event pairing session is an important parameter that can be adjusted to optimize neural plasticity for different clinical needs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766390 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2017.11.004 | DOI Listing |
J Neurophysiol
November 2024
Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States.
eNeuro
July 2021
Oregon Research Hearing Center, Oregon Health and Science University, Portland, Oregon
Chronic vagus nerve stimulation (VNS) has been shown to facilitate learning, but effects of acute VNS on neural coding and behavior remain less well understood. Ferrets implanted with cuff electrodes on the vagus nerve were trained by classical conditioning on an auditory tone frequency-reward association. One tone was associated with reward while another tone was not.
View Article and Find Full Text PDFBrain Stimul
March 2021
The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA. Electronic address:
Background: Rett syndrome is a rare neurological disorder associated with a mutation in the X-linked gene MECP2. This disorder mainly affects females, who typically have seemingly normal early development followed by a regression of acquired skills. The rodent Mecp2 model exhibits many of the classic neural abnormalities and behavioral deficits observed in individuals with Rett syndrome.
View Article and Find Full Text PDFNeuroscience
August 2020
Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States.
J Neurophysiol
August 2019
The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.
Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with sounds can enhance the primary auditory cortex (A1) response to the paired sound. The neural response to sounds following VNS-sound pairing in other subcortical and cortical auditory fields has not been documented. We predicted that VNS-tone pairing would increase neural responses to the paired tone frequency across the auditory pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!