Administration of antibodies to sclerostin (Scl-Ab) has been shown to increase bone mass, bone mineral density (BMD) and bone strength by increasing bone formation and decreasing bone resorption in both animal studies and human clinical trials. In these studies, the magnitude and rate of increase in bone formation markers is attenuated upon repeat dosing with Scl-Ab despite a continuous and progressive increase in BMD. Here, we investigated whether the attenuation in the bone formation response following repeated administration of Scl-Ab was associated with increased expression of secreted antagonists of Wnt signalling and determined how the circulating marker of bone formation, P1NP, responded to single, or multiple doses, of Scl-Ab four days post-dosing. Female Balb/c mice were treated with Scl-Ab and we demonstrated that the large increase in serum P1NP observed following the first dose was reduced following administration of multiple doses of Scl-Ab. This dampening of the P1NP response was not due to a change in the kinetics of the bone formation marker response, or differences in exposure to the drug. The abundance of transcripts encoding several secreted Wnt antagonists was determined in femurs collected from mice following one or six doses of Scl-Ab, or vehicle treatment. Compared with vehicle controls, expression of SOST, SOST-DC1, DKK1, DKK2, SFRP1, SFRP2, FRZB, SFRP4 and WIF1 transcripts was significantly increased (approximately 1.5-4.2 fold) following a single dose of Scl-Ab. With the exception of SFRP1, these changes were maintained or further increased following six doses of Scl-Ab and the abundance of SFRP5 was also increased. Up-regulation of these Wnt antagonists may exert a negative feedback to increased Wnt signalling induced by repeated administration of Scl-Ab and could contribute to self-regulation of the bone formation response over time. After an antibody-free period of four weeks or more, the P1NP response was comparable to the naïve response, and a second phase of treatment with Scl-Ab following an antibody-free period elicited additional gains in BMD. Together, these data demonstrate that the rapid dampening of the bone formation response in the immediate post-dose period which occurs after repeat dosing of Scl-Ab is associated with increased expression of Wnt antagonists, and a treatment-free period can restore the full bone formation response to Scl-Ab.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2017.11.003DOI Listing

Publication Analysis

Top Keywords

bone formation
36
formation response
20
wnt antagonists
16
doses scl-ab
16
scl-ab
13
repeat dosing
12
bone
12
formation
9
response
9
dampening bone
8

Similar Publications

Tibial Skeletal Adaptations in Male and Female Marine Corps Officer Candidates Undergoing 10 Weeks of Military Training.

Calcif Tissue Int

January 2025

Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, 3860 S. Water St, Pittsburgh, PA, 15203, USA.

Military training improves tibial density, structure, and estimated strength; however, men and women may adapt differently. Most work performed in military populations has assessed changes in bone health during initial entry programs, a timeframe at the beginning of a service member's career when bones may be more adaptable to a novel mechanical stimulus. The purpose of this investigation was to examine changes in tibial volumetric bone mineral density (vBMD), structure, and estimated strength, and biomarkers of bone metabolism (P1NP, osteocalcin, TRAP5b, sclerostin) between male and female candidates measured at the start and end of United States Marine Corps Officer Candidates School (OCS), a 10-week military training program attended by older service members (~ 25 y/o) who may have previous military experience.

View Article and Find Full Text PDF

This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed.

View Article and Find Full Text PDF

Regenerating periodontal bone defect surrounding periodontal tissue is crucial for orthodontic or dental implant treatment. The declined osteogenic ability of periodontal ligament stem cells (PDLSCs) induced by inflammation stimulus contributes to reduced capacity to regenerate periodontal bone, which brings about a huge challenge for treating periodontitis. Here, inspired by the adhesive property of mussels, we have created adhesive and mineralized hydrogel microspheres loaded with traditional compound cordycepin (MMS-CY).

View Article and Find Full Text PDF

The pathophysiology of rotator cuff disease is complex, involving intrinsic and extrinsic factors that contribute to mechanical alterations, inflammation, apoptosis, and neovascularization. These changes result in structural and cellular disruptions, including inflammatory cell infiltration and collagen disorganization. Macrophages have recently gained attention as critical mediators of tissue repair and regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!