Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Global change drivers, in particular climate change, exotic species introduction, and habitat alteration, affect insect pollinators in numerous ways. In response, insect pollinators show shifts in range and phenology, interactions with plants and other taxa are altered, and in some cases pollination services have diminished. Recent studies show some pollinators are tracking climate change by moving latitudinally and elevationally, while others are not. Shifts in insect pollinator phenology generally keep pace with advances in flowering, although there are exceptions. Recent data demonstrate competition between exotic and native bees, along with rapid positive effects of exotic plant removal on pollinator richness. Genetic analyses tie bee fitness to habitat quality. Across drivers, novel communities are a common outcome that deserves more study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cois.2017.06.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!