Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to optimise and evaluate an intracellular cytokine staining (ICS) assay for assessment of T cell IFN-γ responses in chickens vaccinated against Newcastle disease (ND). We aimed to validate currently available antibodies to chicken IFN-γ using transfected CHO cells. Moreover, this ICS assay was evaluated for use to detect mitogen and antigen induced IFN-γ production in chicken peripheral blood leucocytes. Chickens from an inbred white leghorn line containing two MHC haplotypes, B19 and B21, were divided into three experimental groups; one group was kept as naive controls, one group was vaccinated intramuscularly twice with a commercial inactivated ND virus (NDV) vaccine, and the last group was vaccinated orally twice with a commercial live attenuated NDV vaccine. PBMC were ex vivo stimulated with ConA or with NDV antigen. The ICS assay was used to determine the phenotype and frequency of IFN-γ positive cells. ConA stimulation induced extensive IFN-γ production in both CD3TCRγδ (γδ T cells) cells and CD3TCRγδ cells (αβ T cells), but no significant differences were observed between the experimental groups. Furthermore, a large proportion of the IFN-γ producing cells were CD3 indicating that other cells than classic T cells, secreted this cytokine. NDV antigen stimulation induced IFN-γ production but to a lower extent than ConA and with a large variation between individuals. The CD3TCR1γδCD8α (CTL) population produced the highest NDV specific IFN-γ responses, with significantly elevated levels of IFN-γ producing cells in the B19 chickens vaccinated orally with live attenuated NDV vaccine. This was not the case in the B21 animals, indicating a haplotype restricted variation. In contrast, the CD3TCR1γδCD4 (Th) population did not show a significant increase in IFN-γ production in NDV stimulated samples which was in part due to a high number of IFN-γ producing cells after incubation with medium alone. In conclusion, an ICS assay for phenotyping of IFN-γ producing chicken leukocytes was set up that proved useful in identifying cytokine producing cells upon either mitogen or antigen-specific stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697524 | PMC |
http://dx.doi.org/10.1016/j.vetimm.2017.10.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!