Two-pore channels (TPCs) are two-domain members of the voltage-gated ion channel superfamily that localize to acidic organelles. Their mechanism of activation (ligands such as NAADP/PI(3,5)P versus voltage) and ion selectivity (Ca versus Na) is debated. Here we report that a cluster of arginine residues in the first domain required for selective voltage-gating of TPC1 map not to the voltage-sensing fourth transmembrane region (S4) but to a cytosolic downstream region (S4-S5 linker). These residues are conserved between TPC isoforms suggesting a generic role in TPC activation. Accordingly, mutation of residues in TPC1 but not the analogous region in the second domain prevents Ca release by NAADP in intact cells. Our data affirm the role of TPCs in NAADP-mediated Ca signalling and unite differing models of channel activation through identification of common domain-specific residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700777PMC
http://dx.doi.org/10.1016/j.ceca.2017.09.003DOI Listing

Publication Analysis

Top Keywords

arginine residues
8
s4-s5 linker
8
residues
5
naadp-evoked signals
4
signals two-pore
4
two-pore channel-1
4
channel-1 require
4
require arginine
4
residues s4-s5
4
linker two-pore
4

Similar Publications

The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.

View Article and Find Full Text PDF

Antibacterial and Antifungal Activities of Linear and Cyclic Peptides Containing Arginine, Tryptophan, and Diphenylalanine.

Antibiotics (Basel)

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.

We have previously reported peptides composed of sequential arginine (R) residues paired with tryptophan (W) or 3,3-diphenyl-L-alanine residues (Dip), such as cyclic peptides [RW] and [R(Dip)], as antibacterial agents. Herein, we report antibacterial and antifungal activities of five linear peptides, namely ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), and (DipR)R, and five cyclic peptides [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], and [DipR], containing alternate positively charged R and hydrophobic W and Dip residues against fungal, Gram-positive, and Gram-negative bacterial pathogens. The minimum inhibitory concentrations (MICs) of all peptides were determined by the micro-broth dilution method against , , , , , , , , and .

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s), the four-stranded structures formed by guanine-rich RNA sequences, are recognized by regions in RNA-binding proteins (RBPs) that are enriched in arginine-glycine repeats (RGG motifs). Importantly, arginine and glycine are encoded by guanine-rich codons, suggesting that some RGG motifs may both be encoded by and interact with rG4s in autogenous messenger RNAs (mRNAs). By analyzing transcriptome-wide rG4 datasets, we show that hundreds of RGG motifs in humans are at least partly encoded by rG4s, with an increased incidence for longer RGG motifs (~10 or more residues).

View Article and Find Full Text PDF

Mutations of the Cullin-3 (Cul3) E3 ubiquitin ligase are associated with autism and schizophrenia, neurological disorders characterized by sleep disturbances and altered synaptic function. Cul3 engages dozens of adaptor proteins to recruit hundreds of substrates for ubiquitination, but the adaptors that impact sleep and synapses remain ill-defined. Here we implicate Insomniac (Inc), a conserved protein required for normal sleep and synaptic homeostasis in Drosophila, as a Cul3 adaptor.

View Article and Find Full Text PDF

Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.

Protein Sci

February 2025

Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.

PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!